小学三年级数学知识点总结11篇

我要投稿投诉建议
您现在的位置:首页 > 范文 > 班主任相关 > 班主任工作总结

小学三年级数学知识点总结11篇

2023-07-23 13:55:02

  小学三年级数学知识点总结11篇

小学三年级数学知识点总结11篇

小学三年级数学知识点总结第1篇

  总结就是把一个时段的学习、工作或其完成情况进行一次全面系统的总结,它是增长才干的一种好办法,让我们一起认真地写一份总结吧。那么你知道总结如何写吗?下面是小编收集整理的八年级数学上册基础知识点总结,希望能够帮助到大家。

  第十一章全等三角形

  1、全等三角形的性质:全等三角形对应边相等、对应角相等。

  2、全等三角形的判定:三边相等(SSS)、两边和它们的夹角相等(SAS)、两角和它们的夹边(ASA)、两角和其中一角的对边对应相等(AAS)、斜边和直角边相等的两直角三角形(HL)。

  3、角平分线的性质:角平分线平分这个角,角平分线上的点到角两边的距离相等

  4、角平分线推论:角的内部到角的两边的距离相等的点在叫的平分线上。

  5、证明两三角形全等或利用它证明线段或角的相等的基本方法步骤:①、确定已知条件(包括隐含条件,如公共边、公共角、对顶角、角平分线、中线、高、等腰三角形、等所隐含的边角关系),②、回顾三角形判定,搞清我们还需要什么,③、正确地书写证明格式(顺序和对应关系从已知推导出要证明的问题)。

  第十二章轴对称

  1、如果一个图形沿某条直线折叠后,直线两旁的部分能够互相重合,那么这个图形叫做轴对称图形;这条直线叫做对称轴。

  2、轴对称图形的对称轴,是任何一对对应点所连线段的垂直平分线。

  3、角平分线上的点到角两边距离相等。

  4、线段垂直平分线上的任意一点到线段两个端点的距离相等。

  5、与一条线段两个端点距离相等的点,在这条线段的垂直平分线上。

  6、轴对称图形上对应线段相等、对应角相等。

  7、画一图形关于某条直线的轴对称图形的步骤:找到关键点,画出关键点的对应点,按照原图顺序依次连接各点。

  8、点(x,y)关于x轴对称的点的坐标为(x,—y)

  点(x,y)关于y轴对称的点的坐标为(—x,y)

  点(x,y)关于原点轴对称的点的坐标为(—x,—y)

  9、等腰三角形的性质:等腰三角形的两个底角相等,(等边对等角)

  等腰三角形的顶角平分线、底边上的高、底边上的中线互相重合,简称为“三线合一”。

  10、等腰三角形的判定:等角对等边。

  11、等边三角形的三个内角相等,等于60°,

  12、等边三角形的判定:三个角都相等的三角形是等腰三角形。

  有一个角是60°的等腰三角形是等边三角形。

  有两个角是60°的三角形是等边三角形。

  13、直角三角形中,30°角所对的直角边等于斜边的一半。

  14、直角三角形斜边上的中线等于斜边的一半

  第十三章实数

  ※算术平方根:一般地,如果一个正数x的平方等于a,即x2=a,那么正数x叫做a的算术平方根,记作。0的算术平方根为0;从定义可知,只有当a≥0时,a才有算术平方根。

  ※平方根:一般地,如果一个数x的平方根等于a,即x2=a,那么数x就叫做a的平方根。

  ※正数有两个平方根(一正一负)它们互为相反数;0只有一个平方根,就是它本身;负数没有平方根。

  ※正数的立方根是正数;0的立方根是0;负数的立方根是负数。

  数a的相反数是—a,一个正实数的绝对值是它本身,一个负数的绝对值是它的相反数,0的绝对值是0

  第十四章一次函数

  1、画函数图象的一般步骤:一、列表(一次函数只用列出两个点即可,其他函数一般需要列出5个以上的点,所列点是自变量与其对应的函数值),二、描点(在直角坐标系中,以自变量的值为横坐标,相应函数的值为纵坐标,描出表格中的个点,一般画一次函数只用两点),三、连线(依次用平滑曲线连接各点)。

  2、根据题意写出函数解析式:关键找到函数与自变量之间的等量关系,列出等式,既函数解析式。

  3、若两个变量x,y间的关系式可以表示成y=kx+b(k≠0)的形式,则称y是x的一次函数(x为自变量,y为因变量)。特别地,当b=0时,称y是x的正比例函数。

  4、正比列函数一般式:y=kx(k≠0),其图象是经过原点(0,0)的一条直线。

  5、正比列函数y=kx(k≠0)的图象是一条经过原点的直线,当k>0时,直线y=kx经过第一、三象限,y随x的增大而增大,当k<0时,直线y=kx经过第二、四象限,y随x的增大而减小,在一次函数y=kx+b中:k="">0时,y随x的增大而增大;当k<0时,y随x的增大而减小。

  6、已知两点坐标求函数解析式(待定系数法求函数解析式):

  把两点带入函数一般式列出方程组

  求出待定系数

  把待定系数值再带入函数一般式,得到函数解析式

  7、会从函数图象上找到一元一次方程的`解(既与x轴的交点坐标横坐标值),一元一次不等式的解集,二元一次方程组的解(既两函数直线交点坐标值)

  第十五章整式的乘除与因式分解

  1、同底数幂的乘法

  ※同底数幂的乘法法则:(m,n都是正数)是幂的运算中最基本的法则,在应用法则运算时,要注意以下几点:

  ①法则使用的前提条件是:幂的底数相同而且是相乘时,底数a可以是一个具体的数字式字母,也可以是一个单项或多项式;

  ②指数是1时,不要误以为没有指数;

  ③不要将同底数幂的乘法与整式的加法相混淆,对乘法,只要底数相同指数就可以相加;而对于加法,不仅底数相同,还要求指数相同才能相加;

  ④当三个或三个以上同底数幂相乘时,法则可推广为(其中m、n、p均为正数);

  ⑤公式还可以逆用:(m、n均为正整数)

  2、幂的乘方与积的乘方

  ※1、幂的乘方法则:(m,n都是正数)是幂的乘法法则为基础推导出来的,但两者不能混淆。

  ※2、底数有负号时,运算时要注意,底数是a与(—a)时不是同底,但可以利用乘方法则化成同底,如将(—a)3化成—a3。

  ※3、底数有时形式不同,但可以化成相同。

  ※4、要注意区别(ab)n与(a+b)n意义是不同的,不要误以为(a+b)n=an+bn(a、b均不为零)。

  ※5、积的乘方法则:积的乘方,等于把积每一个因式分别乘方,再把所得的幂相乘,即(n为正整数)。

  ※6、幂的乘方与积乘方法则均可逆向运用。

  3、整式的乘法

  ※(1)单项式乘法法则:单项式相乘,把它们的系数、相同字母分别相乘,对于只在一个单项式里含有的字母,连同它的指数作为积的一个因式。

  单项式乘法法则在运用时要注意以下几点:

  ①积的系数等于各因式系数积,先确定符号,再计算绝对值。这时容易出现的错误的是,将系数相乘与指数相加混淆;

  ②相同字母相乘,运用同底数的乘法法则;

  ③只在一个单项式里含有的字母,要连同它的指数作为积的一个因式;

  ④单项式乘法法则对于三个以上的单项式相乘同样适用;

  ⑤单项式乘以单项式,结果仍是一个单项式。

  ※(2)单项式与多项式相乘

  单项式乘以多项式,是通过乘法对加法的分配律,把它转化为单项式乘以单项式,即单项式与多项式相乘,就是用单项式去乘多项式的每一项,再把所得的积相加。

  单项式与多项式相乘时要注意以下几点:

  ①单项式与多项式相乘,积是一个多项式,其项数与多项式的项数相同;

  ②运算时要注意积的符号,多项式的每一项都包括它前面的符号;

  ③在混合运算时,要注意运算顺序。

  ※(3)多项式与多项式相乘

  多项式与多项式相乘,先用一个多项式中的每一项乘以另一个多项式的每一项,再把所得的积相加。

  多项式与多项式相乘时要注意以下几点:

  ①多项式与多项式相乘要防止漏项,检查的方法是:在没有合并同类项之前,积的项数应等于原两个多项式项数的积;

  ②多项式相乘的结果应注意合并同类项;

  ③对含有同一个字母的一次项系数是1的两个一次二项式相乘,其二次项系数为1,一次项系数等于两个因式中常数项的和,常数项是两个因式中常数项的积。对于一次项系数不为1的两个一次二项式(mx+a)和(nx+b)相乘可以得

  4、平方差公式

  ¤1、平方差公式:两数和与这两数差的积,等于它们的平方差,

  ※即。

  ¤其结构特征是:

  ①公式左边是两个二项式相乘,两个二项式中第一项相同,第二项互为相反数;

  ②公式右边是两项的平方差,即相同项的平方与相反项的平方之差。

  5、完全平方公式

  ¤1、完全平方公式:两数和(或差)的平方,等于它们的平方和,加上(或减去)它们的积的2倍。

  ¤即;

  ¤口决:首平方,尾平方,2倍乘积在中央;

  ¤2、结构特征:

  ①公式左边是二项式的完全平方;

  ②公式右边共有三项,是二项式中二项的平方和,再加上或减去这两项乘积的2倍。

  ¤3、在运用完全平方公式时,要注意公式右边中间项的符号,以及避免出现这样的错误。

  添括号法则:添正不变号,添负各项变号,去括号法则同样

  6、同底数幂的除法

  ※1、同底数幂的除法法则:同底数幂相除,底数不变,指数相减,即(a≠0,m、n都是正数,且m>n)。

  ※2、在应用时需要注意以下几点:

  ①法则使用的前提条件是“同底数幂相除”而且0不能做除数,所以法则中a≠0。

  ②任何不等于0的数的0次幂等于1,即,如,(—2.0=1),则00无意义。

  ③任何不等于0的数的—p次幂(p是正整数),等于这个数的p的次幂的倒数,即(a≠0,p是正整数),而0—1,0—3都是无意义的;当a>0时,a—p的值一定是正的;当a<0时,a—p的值可能是正也可能是负的,如,

  ④运算要注意运算顺序。

  7、整式的除法

  ¤1、单项式除法单项式

  单项式相除,把系数、同底数幂分别相除,作为商的因式,对于只在被除式里含有的字母,则连同它的指数作为商的一个因式;

  ¤2、多项式除以单项式

  多项式除以单项式,先把这个多项式的每一项除以单项式,再把所得的商相加,其特点是把多项式除以单项式转化成单项式除以单项式,所得商的项数与原多项式的项数相同,另外还要特别注意符号。

  8、分解因式

  ※1、把一个多项式化成几个整式的积的形式,这种变形叫做把这个多项式分解因式。

  ※2、因式分解与整式乘法是互逆关系。

  因式分解与整式乘法的区别和联系:

  (1)整式乘法是把几个整式相乘,化为一个多项式;

  (2)因式分解是把一个多项式化为几个因式相乘。

小学三年级数学知识点总结第2篇

  一、知识网络结构

  二、知识要点

  1、在同一平面内,两条直线的位置关系有两种:相交和平行,垂直是相交的一种特殊情况。

  2、在同一平面内,不相交的两条直线叫平行线。如果两条直线只有一个公共点,称这两条直线相交;如果两条直线没有公共点,称这两条直线平行。

  3、两条直线相交所构成的四个角中,有公共顶点且有一条公共边的两个角是

  邻补角。邻补角的性质:邻补角互补。如图1所示,与互为邻补角,

  与互为邻补角。 + = 180°; + = 180°; + = 180°;

  + = 180°。

  4、两条直线相交所构成的四个角中,一个角的两边分别是另一个角的两边的反向延长线,这样的两个角互为对顶角。对顶角的性质:对顶角相等。如图1所示,与互为对顶角。 = ;

  5、两条直线相交所成的角中,如果有一个是直角或90°时,称这两条直线互相垂直,

  其中一条叫做另一条的垂线。如图2所示,当= 90°时,⊥ 。

  垂线的性质:

  性质1:过一点有且只有一条直线与已知直线垂直。

  性质2:连接直线外一点与直线上各点的所有线段中,垂线段最短。

  性质3:如图2所示,当a ⊥ b时,= = = = 90°。

  点到直线的距离:直线外一点到这条直线的垂线段的长度叫点到直线的距离。

  6、同位角、内错角、同旁内角基本特征:

  ①在两条直线(被截线)的同一方,都在第三条直线(截线)的同一侧,这样

  的两个角叫同位角。图3中,共有对同位角:与是同位角;

  与是同位角;与是同位角;与是同位角。

  ②在两条直线(被截线)之间,并且在第三条直线(截线)的两侧,这样的两个角叫内错角。图3中,共有对内错角:与是内错角;与是内错角。

  ③在两条直线(被截线)的之间,都在第三条直线(截线)的同一旁,这样的两个角叫同旁内角。图3中,共有对同旁内角:与是同旁内角;与是同旁内角。

  7、平行公理:经过直线外一点有且只有一条直线与已知直线平行。

  平行公理的推论:如果两条直线都与第三条直线平行,那么这两条直线也互相平行。

  平行线的性质:

  性质1:两直线平行,同位角相等。如图4所示,如果a∥b,

  则= ; = ; = ; = 。

  性质2:两直线平行,内错角相等。如图4所示,如果a∥b,则= ; = 。

  性质3:两直线平行,同旁内角互补。如图4所示,如果a∥b,则+ = 180°;

  + = 180°。

  性质4:平行于同一条直线的两条直线互相平行。如果a∥b,a∥c,则∥ 。

  8、平行线的判定:

  判定1:同位角相等,两直线平行。如图5所示,如果=

  或=或=或=,则a∥b。

  判定2:内错角相等,两直线平行。如图5所示,如果=或=,则a∥b 。

  判定3:同旁内角互补,两直线平行。如图5所示,如果+ = 180°;

  + = 180°,则a∥b。

  判定4:平行于同一条直线的两条直线互相平行。如果a∥b,a∥c,则∥ 。

  9、判断一件事情的语句叫命题。命题由题设和结论两部分组成,有真命题和假命题之分。如果题设成立,那么结论一定成立,这样的命题叫真命题;如果题设成立,那么结论不一定成立,这样的命题叫假命题。真命题的正确性是经过推理证实的,这样的真命题叫定理,它可以作为继续推理的依据。

  10、平移:在平面内,将一个图形沿某个方向移动一定的距离,图形的这种移动叫做平移变换,简称平移。

  平移后,新图形与原图形的形状和大小完全相同。平移后得到的新图形中每一点,都是由原图形中的某一点移动后得到的,这样的两个点叫做对应点。

  平移性质:平移前后两个图形中①对应点的连线平行且相等;②对应线段相等;③对应角相等。

  第六章实数

  【知识点一】实数的分类

  1、按定义分类:2.按性质符号分类:

  注:0既不是正数也不是负数.

  【知识点二】实数的相关概念

  1.相反数

  (1)代数意义:只有符号不同的两个数,我们说其中一个是另一个的相反数.0的相反数是0.

  (2)几何意义:在数轴上原点的两侧,与原点距离相等的两个点表示的两个数互为相反数,或数轴上,互为相反数的两个数所对应的点关于原点对称.

  (3)互为相反数的两个数之和等于0.a、b互为相反数a+b=0.

  2.绝对值|a|≥0.

  3.倒数(1)0没有倒数(2)乘积是1的两个数互为倒数.a、b互为倒数.

  4.平方根

  (1)如果一个数的平方等于a,这个数就叫做a的平方根.一个正数有两个平方根,它们互为相反数;0有一个平方根,它是0本身;负数没有平方根.a(a≥0)的平方根记作.

  (2)一个正数a的正的平方根,叫做a的算术平方根.a(a≥0)的算术平方根记作.

  5.立方根

  如果x3=a,那么x叫做a的立方根.一个正数有一个正的立方根;一个负数有一个负的立方根;零的立方根是零.

  【知识点三】实数与数轴

  数轴定义:规定了原点,正方向和单位长度的直线叫做数轴,数轴的三要素缺一不可.

  【知识点四】实数大小的比较

  1.对于数轴上的任意两个点,靠右边的点所表示的数较大.

  2.正数都大于0,负数都小于0,两个正数,绝对值较大的那个正数大;两个负数;绝对值大的反而小.

  3.无理数的比较大小:

  【知识点五】实数的运算

  1.加法

  同号两数相加,取相同的符号,并把绝对值相加;绝对值不相等的异号两数相加,取绝对值较大的加数的符号,并用较大的绝对值减去较小的绝对值;互为相反数的两个数相加得0;一个数同0相加,仍得这个数.

  2.减法:减去一个数等于加上这个数的相反数.

  3.乘法

  几个非零实数相乘,积的符号由负因数的个数决定,当负因数有偶数个时,积为正;当负因数有奇数个时,积为负.几个数相乘,有一个因数为0,积就为0.

  4.除法

  除以一个数,等于乘上这个数的倒数.两个数相除,同号得正,异号得负,并把绝对值相除.0除以任何一个不等于0的数都得0.

  5.乘方与开方

  (1)an所表示的意义是n个a相乘,正数的任何次幂是正数,负数的偶次幂是正数,负数的奇次幂是负数.

  (2)正数和0可以开平方,负数不能开平方;正数、负数和0都可以开立方.

  (3)零指数与负指数

  【知识点六】有效数字和科学记数法

  1.有效数字:

  一个近似数,从左边第一个不是0的数字起,到精确到的数位为止,所有的数字,都叫做这个近似数的有效数字.

  2.科学记数法:

  把一个数用(1≤<10,n为整数)的形式记数的方法叫科学记数法.

  第七章平面直角坐标系

  一、知识网络结构

  二、知识要点

  1、有序数对:有顺序的两个数a与b组成的数对叫做有序数对,记做(a,b) 。

  2、平面直角坐标系:在平面内,两条互相垂直且有公共原点的数轴组成平面直角坐标系。

  3、横轴、纵轴、原点:水平的数轴称为x轴或横轴;竖直的数轴称为y轴或纵轴;两坐标轴的交点为平面直角坐标系的原点。

  4、坐标:对于平面内任一点P,过P分别向x轴,y轴作垂线,垂足分别在x轴,y轴上,对应的数a,b分别叫点P的横坐标和纵坐标,记作P(a,b)。

  5、象限:两条坐标轴把平面分成四个部分,右上部分叫第一象限,按逆时针方向依次叫第二象限、第三象限、第四象限。坐标轴上的点不在任何一个象限内。

  6、各象限点的坐标特点①第一象限的点:横坐标0,纵坐标0;②第二象限的点:横坐标0,纵坐标0;③第三象限的点:横坐标0,纵坐标0;④第四象限的点:横坐标0,纵坐标0。

  7、坐标轴上点的坐标特点①x轴正半轴上的点:横坐标0,纵坐标0;②x轴负半轴上的点:横坐标0,纵坐标0;③y轴正半轴上的点:横坐标0,纵坐标0;④y轴负半轴上的点:横坐

  标0,纵坐标0;⑤坐标原点:横坐标0,纵坐标0。(填“>”、“

  8、点P(a,b)到x轴的距离是|b|,到y轴的距离是|a| 。

  9、对称点的坐标特点①关于x轴对称的两个点,横坐标相等,纵坐标互为相反数;②关于y轴对称的两个点,纵坐标相等,横坐标互为相反数;③关于原点对称的两个点,横坐标、纵坐标分别互为相反数。

  10、点P(2,3)到x轴的距离是;到y轴的距离是;点P(2,3)关于x轴对称的点坐标为(,);点P(2,3)关于y轴对称的点坐标为(,)。

  11、如果两个点的横坐标相同,则过这两点的直线与y轴平行、与x轴垂直;如果两点的纵坐标相同,则过这两点的直线与x轴平行、与y轴垂直。如果点P(2,3)、Q(2,6),这两点横坐标相同,则PQ∥y轴,PQ⊥x轴;如果点P(-1,2)、Q(4,2),这两点纵坐标相同,则PQ∥x轴,PQ⊥y轴。

  12、平行于x轴的直线上的点的纵坐标相同;平行于y轴的直线上的点的横坐标相同;在一、三象限角平分线上的点的横坐标与纵坐标相同;在二、四象限角平分线上的点的横坐标与纵坐标互为相反数。如果点P(a,b)在一、三象限角平分线上,则P点的横坐标与纵坐标相同,即a = b ;如果点P(a,b)在二、四象限角平分线上,则P点的横坐标与纵坐标互为相反数,即a = -b 。

  13、表示一个点(或物体)的位置的方法:一是准确恰当地建立平面直角坐标系;二是正确写出物体或某地所在的点的坐标。选择的坐标原点不同,建立的平面直角坐标系也不同,得到的同一个点的坐标也不同。

  14、图形的平移可以转化为点的平移。坐标平移规律:①左右平移时,横坐标进行加减,纵坐标不变;②上下平移时,横坐标不变,纵坐标进行加减;③坐标进行加减时,按“左减右加、上加下减”的规律进行。如将点P(2,3)向左平移2个单位后得到的点的坐标为(,);将点P(2,3)向右平移2个单位后得到的点的坐标为(,);将点P(2,3)向上平移2个单位后得到的点的坐标为(,);将点P(2,3)向下平移2个单位后得到的点的坐标为(,);将点P(2,3)先向左平移3个单位后再向上平移5个单位后得到的点的坐标为(,);将点P(2,3)先向左平移3个单位后再向下平移5个单位后得到的点的坐标为(,);将点P(2,3)先向右平移3个单位后再向上平移5个单位后得到的点的坐标为(,);将点P(2,3)先向右平移3个单位后再向下平移5个单位后得到的点的坐标为(,)。

  第八章二元一次方程组

  一、知识网络结构

  二、知识要点

  1、含有未知数的等式叫方程,使方程左右两边的值相等的未知数的值叫方程的解。

  2、方程含有两个未知数,并且含有未知数的项的次数都是1,这样的方程叫二元一次方程,二元一次方程的一般形式为(为常数,并且)。使二元一次方程的左右两边的值相等的未知数的值叫二元一次方程的解,一个二元一次方程一般有无数组解。

  3、方程组含有两个未知数,并且含有未知数的项的次数都是1,这样的方程组叫二元一次方程组。使二元一次方程组每个方程的左右两边的值相等的未知数的值叫二元一次方程组的解,一个二元一次方程组一般有一个解。

  4、用代入法解二元一次方程组的一般步骤:观察方程组中,是否有用含一个未知数的式子表示另一个未知数,如果有,则将它直接代入另一个方程中;如果没有,则将其中一个方程变形,用含一个未知数的式子表示另一个未知数;再将表示出的未知数代入另一个方程中,从而消去一个未知数,求出另一个未知数的值,将求得的未知数的值代入原方程组中的任何一个方程,求出另外一个未知数的值。

  5、用加减法解二元一次方程组的一般步骤:(1)方程组的两个方程中,如果同一个未知数的系数既不相等又不互为相反数,就用适当的数去乘方程的两边,使同一个未知数的系数相等或互为相反数;(2)把两个方程的两边分别相加或相减,消去一个未知数;(3)解这个一元一次方程,求出一个未知数的值;(4)将求出的未知数的值代入原方程组中的任何一个方程,求出另外一个未知数的值,从而得到原方程组的解。

  6、解三元一次方程组的一般步骤:①观察方程组中未知数的系数特点,确定先消去哪个未知数;②利用代入法或加减法,把方程组中的一个方程,与另外两个方程分别组成两组,消去同一个未知数,得到一个关于另外两个未知数的二元一次方程组;③解这个二元一次方程组,求得两个未知数的值;④将这两个未知数的值代入原方程组中较简单的一个方程中,求出第三个未知数的值,从而得到原三元一次方程组的解。

  第九章不等式与不等式组

  一、知识网络结构

  二、知识要点

  1、用不等号表示不等关系的式子叫不等式,不等号主要包括:> 、 < 、 ≥ 、 ≤ 、 ≠ 。

  2、在含有未知数的不等式中,使不等式成立的未知数的值叫不等式的解,一个含有未知数的不等式的所有的解组成的集合,叫这个不等式的解集。不等式的解集可以在数轴上表示出来。求不等式的解集的过程叫解不等式。含有一个未知数,并且所含未知数的项的次数都是1,这样的不等式叫一元一次不等式。

  3、不等式的性质:

  ①性质1:不等式的两边同时加上(或减去)同一个数(或式子),不等号的方向不变。

  用字母表示为:如果,那么;如果,那么;

  如果,那么;如果,那么。

  ②性质2:不等式的两边同时乘以(或除以)同一个正数,不等号的方向不变。

  用字母表示为:如果,那么(或);如果,那么(或);

  如果,那么(或);如果,那么(或);

  ③性质3:不等式的两边同时乘以(或除以)同一个负数,不等号的方向改变。

  用字母表示为:如果,那么(或);如果,那么(或);

  如果,那么(或);如果,那么(或);

  4、解一元一次不等式的一般步骤:①去分母;②去括号;③移项;④合并同类项; ⑤系数化为1 。这与解一元一次方程类似,在解时要根据一元一次不等式的具体情况灵活选择步骤。

  5、不等式组中含有一个未知数,并且所含未知数的项的次数都是1,这样的不等式组叫一元一次不等式组。使不等式组中的每个不等式都成立的未知数的值叫不等式组的解,一个不等式组的所有的解组成的集合,叫这个不等式组的解集解(简称不等式组的解)。不等式组的解集可以在数轴上表示出来。求不等式组的解集的过程叫解不等式组。

  6、解一元一次不等式组的一般步骤:①求出这个不等式组中各个不等式的解集;②利用数轴求出这些不等式的解集的公共部分,得到这个不等式组的解集。如果这些不等式的解集的没有公共部分,则这个不等式组无解(此时也称这个不等式组的解集为空集)。

  7、求出各个不等式的解集后,确定不等式组的解的口诀:大大取大,小小取小,大小小大取中间,大大小小无处找。

  第十章数据的收集、整理与描述

  知识要点

  1、对数据进行处理的一般过程:收集数据、整理数据、描述数据、分析得出结论。

  2、数据收集过程中,调查的方法通常有两种:全面调查和抽样调查。

  3、除了文字叙述、列表、划记法外,还可以用条形图、折线图、扇形图、直方图来描述数据。

  4、抽样调查简称抽查,它只抽取一部分对象进行调查,根据调查数据推断全体对象的情况。要考察的全体对象叫总体,组成总体的每一个考察对象叫个体,被抽取的那部分个体组成总体的一个样本,样本中个体的数目叫这个样本的容量。

  5、画频数直方图的步骤:①计算数差(值与最小值的差);②确定组距和组数;③列频数分布表;④画频数直方图。

小学三年级数学知识点总结第3篇

  在年少学习的日子里,大家都没少背知识点吧?知识点就是学习的重点。想要一份整理好的知识点吗?以下是小编为大家收集的数学四年级第三章重点知识点总结,欢迎大家分享。

  分数大小比较

  1、会比较同分母分数或同分子分数的大小。

  2、解决相关的简单的实际问题。

  3、认识不同的分数可以表示相同的量。

  4、认识等值分数;会找到相等的分数。

  分数的'加减计算

  1、理解算理,会计算分母在20以内的同分母分数加减法的计算方法。

  2、能正确计算20以内的同分母分数加减法。

  3、通过观察分数墙,会发现分数的有关知识,初步学习“观察、发现、转化”等数学思想方法。

  分数知识点

  1、知道数射线上任何一个点都可以用一个数来表示。实现“分数”概念从“过程”到“对象”的转变。

  2、会在数射线上比较分数的大小。并能直接进行相同分母或者相同分子分数的大小比较。

  3、掌握相同分母分数的加减法计算。

  q在数学中代表什么

  数学中Q表示有理数集,但Q并不表示有理数,有理数集与有理数是两个不同的概念。有理数集是元素为全体有理数的集合,而有理数则为有理数集中的所有元素。

  有理数的认识

  有理数为整数(正整数、0、负整数)和分数的统称。正整数和正分数合称为正有理数,负整数和负分数合称为负有理数。因而有理数集的数可分为正有理数、负有理数和零。由于任何一个整数或分数都可以化为十进制循环小数,反之,每一个十进制循环小数也能化为整数或分数,因此,有理数也可以定义为十进制循环小数。

  有理数集是整数集的扩张。在有理数集内,加法、减法、乘法、除法(除数不为零)4种运算通行无阻。

  有理数a,b的大小顺序的规定:如果a-b是正有理数,则称当a大于b或b小于a,记作a>b或b

  有理数集与整数集的一个重要区别是,有理数集是稠密的,而整数集是密集的。将有理数依大小顺序排定后,任何两个有理数之间必定还存在其他的有理数,这就是稠密性。整数集没有这一特性,两个相邻的整数之间就没有其他的整数了。

  有理数是实数的紧密子集:每个实数都有任意接近的有理数。一个相关的性质是,仅有理数可化为有限连分数。依照它们的序列,有理数具有一个序拓扑。有理数是实数的(稠密)子集,因此它同时具有一个子空间拓扑。

  学好数学的思维

  转化思维

  转化思维,既是一种方法,也是一种思维。转化思维,是指在解决问题的过程中遇到障碍时,通过改变问题的方向,从不同的角度,把问题由一种形式转换成另一种形式,寻求最佳方法,使问题变得更简单、清晰。

  逻辑思维

  逻辑是一切思考的基础。逻辑思维是人们在认识过程中借助于概念、判断、推理等思维形式对事物进行观察、比较、分析、综合、抽象、概括、判断、推理的思维过程。逻辑思维,在解决逻辑推理问题时使用广泛。

  逆向思维

  逆向思维也叫求异思维,它是对司空见惯的似乎已成定论的事物或观点反过来思考的一种思维方式。敢于“反其道而思之”,让思维向对立面的方向发展,从问题的相反面深入地进行探索,树立新思想,创立新形象。

小学三年级数学知识点总结第4篇

  在平平淡淡的学习中,大家对知识点应该都不陌生吧?知识点也可以理解为考试时会涉及到的知识,也就是大纲的分支。为了帮助大家更高效的学习,以下是小编整理的九年级数学圆的知识点归纳总结,仅供参考,大家一起来看看吧。

  一点与圆的位置关系及其数量特征:

  如果圆的半径为r,点到圆心的距离为d,则①点在圆上<===>d=r;②点在圆内<===>dd>r。

  二圆的对称性:

  1与圆相关的概念:

  ④同心圆:圆心相同,半径不等的两个圆叫做同心圆。

  ⑤等圆:能够完全重合的两个圆叫做等圆,半径相等的两个圆是等圆。

  ⑥等弧:在同圆或等圆中,能够互相重合的弧叫做等弧。

  ⑦圆心角:顶点在圆心的角叫做圆心角。

  ⑧弦心距:从圆心到弦的距离叫做弦心距。

  2圆是轴对称图形,直径所在的直线是它的对称轴,圆有无数条对称轴。

  3垂径定理:垂直于弦的直径平分这条弦,并且平分弦所对的两条弧。

  推论:平分弦(不是直径)的.直径垂直于弦,并且平分弦所对的两条弧。

  说明:根据垂径定理与推论可知对于一个圆和一条直线来说,如果具备:

  ①过圆心;②垂直于弦;③平分弦;④平分弦所对的优弧;⑤平分弦所对的劣弧。

  上述五个条件中的任何两个条件都可推出其他三个结论。

  4定理:在同圆或等圆中,相等的圆心角所对弧相等、所对的弦相等、所对的弦心距相等。

  推论:在同圆或等圆中,如果两个圆心角、两条弧、两条弦或两条弦的弦心距中有一组量相等,那么它们所对应的其余各组量都分别相等。

  三圆周角和圆心角的关系:

  1圆周角的定义:顶点在圆上,并且两边都与圆相交的角,叫做圆周角。

  2圆周角定理;一条弧所对的圆周角等于它所对的圆心角的一半。

  推论1:同弧或等弧所对圆周角相等;反之,在同圆或等圆中,相等圆周角所对弧也相等;

  推论2:半圆或直径所对的圆周角是直角;90°的圆周角所对的弦是直径;

  四确定圆的条件:

  1理解确定一个圆必须的具备两个条件:

  经过一点可以作无数个圆,经过两点也可以作无数个圆,其圆心在这个两点线段的垂直平分线上。

  2定理:不在同一直线上的三个点确定一个圆。

  3三角形的外接圆、三角形的外心、圆的内接三角形的概念:

  (1)三角形的外接圆和圆的内接三角形:经过一个三角形三个顶点的圆叫做这个三角形的外接圆,这个三角形叫做圆的内接三角形。

  (2)三角形的外心:三角形外接圆的圆心叫做这个三角形的外心。

  (3)三角形的外心的性质:三角形外心到三顶点的距离相等。

小学三年级数学知识点总结第5篇

  第一章实数

  一、重要概念1.数的分类及概念数系表:

  说明:“分类”的原则:1)相称(不重、不漏)2)有标准

  2.非负数:正实数与零的统称。(表为:x≥0)

  性质:若干个非负数的和为0,则每个非负数均为0。

  3.倒数:①定义及表示法

  ②性质:A.a≠1/a(a≠±1);B.1/a中,a≠0;C.01时,1/a<1;D.积为1。

  4.相反数:①定义及表示法

  ②性质:A.a≠0时,a≠-a;B.a与-a在数轴上的位置;C.和为0,商为-1。

  5.数轴:①定义(“三要素”)

  ②作用:A.直观地比较实数的大小;B.明确体现绝对值意义;C.建立点与实数的一一对应关系。

  6.奇数、偶数、质数、合数(正整数—自然数)

  定义及表示:

  奇数:2n-1

  偶数:2n(n为自然数)

  7.绝对值:①定义(两种):

  代数定义:

  几何定义:数a的绝对值顶的几何意义是实数a在数轴上所对应的点到原点的距离。

  ②│a│≥0,符号“││”是“非负数”的标志;③数a的绝对值只有一个;④处理任何类型的题目,只要其中有“││”出现,其关键一步是去掉“││”符号。

  二、实数的运算

  1.运算法则(加、减、乘、除、乘方、开方)

  2.运算定律(五个—加法[乘法]交换律、结合律;[乘法对加法的]

  分配律)

  3.运算顺序:A.高级运算到低级运算;B.(同级运算)从“左”

  到“右”(如5÷×5);C.(有括号时)由“小”到“中”到“大”。

  三、应用举例(略)

  附:典型例题

  1.已知:a、b、x在数轴上的位置如下图,求证:│x-a│+│x-b│

  =b-a.

  2.已知:a-b=-2且ab<0,(a≠0,b≠0),判断a、b的符号。

  第二章代数式

  ★重点★代数式的有关概念及性质,代数式的运算

  ☆内容提要☆

  一、重要概念

  分类:

  1.代数式与有理式

  用运算符号把数或表示数的字母连结而成的式子,叫做代数式。单独

  的一个数或字母也是代数式。

  整式和分式统称为有理式。

  2.整式和分式

  含有加、减、乘、除、乘方运算的代数式叫做有理式。

  没有除法运算或虽有除法运算但除式中不含有字母的有理式叫做整式。

  有除法运算并且除式中含有字母的有理式叫做分式。

  3.单项式与多项式

  没有加减运算的整式叫做单项式。(数字与字母的积—包括单独的一个数或字母)

  几个单项式的和,叫做多项式。

  说明:①根据除式中有否字母,将整式和分式区别开;根据整式中有否加减运算,把单项式、多项式区分开。②进行代数式分类时,是以所给的代数式为对象,而非以变形后的代数式为对象。划分代数式类别时,是从外形来看。如,

  =x,=│x│等。

  4.系数与指数

  区别与联系:①从位置上看;②从表示的意义上看

  5.同类项及其合并

  条件:①字母相同;②相同字母的指数相同

  合并依据:乘法分配律

  6.根式

  表示方根的代数式叫做根式。

  含有关于字母开方运算的代数式叫做无理式。

  注意:①从外形上判断;②区别:、是根式,但不是无理式(是无理数)。

  7.算术平方根

  ⑴正数a的正的平方根([a≥0—与“平方根”的区别]);

  ⑵算术平方根与绝对值

  ①联系:都是非负数,=│a│

  ②区别:│a│中,a为一切实数;中,a为非负数。

  8.同类二次根式、最简二次根式、分母有理化

  化为最简二次根式以后,被开方数相同的二次根式叫做同类二次根式。

  满足条件:①被开方数的因数是整数,因式是整式;②被开方数中不含有开得尽方的因数或因式。

  把分母中的根号划去叫做分母有理化。

  9.指数

  ⑴(—幂,乘方运算)

  ①a>0时,>0;②a<0时,>0(n是偶数),<0(n是奇数)

  ⑵零指数:=1(a≠0)

  负整指数:=1/(a≠0,p是正整数)

  二、运算定律、性质、法则

  1.分式的加、减、乘、除、乘方、开方法则

  2.分式的性质

  ⑴基本性质:=(m≠0)

  ⑵符号法则:

  ⑶繁分式:①定义;②化简方法(两种)

  3.整式运算法则(去括号、添括号法则)

  4.幂的运算性质:①=;②÷=;③=;④=;⑤

  技巧:

  5.乘法法则:⑴单×单;⑵单×多;⑶多×多。

  6.乘法公式:(正、逆用)

  (a+b)(a-b)=

  (a±b)=

  7.除法法则:⑴单÷单;⑵多÷单。

  8.因式分解:⑴定义;⑵方法:A.提公因式法;B.公式法;C.十字相乘法;D.分组分解法;E.求根公式法。

  9.算术根的性质:=;;(a≥0,b≥0);(a≥0,b>0)(正用、逆用)

  10.根式运算法则:⑴加法法则(合并同类二次根式);⑵乘、除法法则;⑶分母有理化:A.;B.;C..

小学三年级数学知识点总结第6篇

  本单元与第二单元考察内容大同小异。

  第五单元混合运算

  一、混合计算

  混合运算,先乘除,后加减,有括号的要先算括号里面的。

  只有加、减法或只有乘、除法,都要从左到右按顺序计算。

  二、解决两步计算的实际问题

  1、想好先解决什么问题,再解决什么问题。

  2、可以画图帮助分析。

  3、可以分步计算,也可以列综合算式。

  4、带小括号运算的类型:

  方法:算式里有括号的,要先算括号里面的。

  5.把两个算式合并成一个综合算式。(重点)。

  弄清楚哪个数是前一步算式的结果,就用前一步算式替换掉那个数,其他的照写。

  当需要替换的是第二个数,必要时还需要加上小括号。

  第六单元有余数的除法

  有余数的除法

  1、有余数的除法的意义:在平均分一些物体时,有时会有剩余。

  2、余数与除数的关系:在有余数的除法中,余数必须比除数小。

  最大的余数小于除数1,最小的余数是1。

  3、笔算除法的计算方法:

  (1)先写除号“厂”

  (2)被除数写在除号里,除数写在除号的左侧。

  (3)试商,商写在被除数上面,并要对着被除数的个位。

  (4)把商与除数的乘积写在被除数的下面,相同数位要对齐。

  (5)用被除数减去商与除数的乘积,如果没有剩余,就表示能除尽。

  4、有余数的除法的计算方法可以分四步进行:一商,二乘,三减,四比。

  (1)商:即试商,想除数和几相乘最接近被除数且小于被除数,那么商就是几,写在被除数的个位的上面。

  (2)乘:把除数和商相乘,将得数写在被除数下面。

  (3)减:用被除数减去商与除数的乘积,所得的差写在横线的下面。

  (4)比:将余数与除数比一比,余数必须必除数小。

  5、解决问题

  根据除法的意义,解决简单的有余数的除法的问题,要根据实际情况,灵活处理余数。

  (1)余数比除数小。

  (2)至少问题(进一法):商+1

  22个学生去划船,每条船最多坐4人,他们至少要租多少条船?

  22÷4=5(条)……2(人)

  答:他们至少要租6条船。

  (3)最多问题(去尾法)

  茵苗有10元,每个面包3元,茵苗最多能买几个?

  本单元有一道难题,就是已知几月几日是星期几,要求几月几日是星期几。这一部分难度比较大,家长们可以先自行观看教学视频,自己先弄明白了,再给孩子讲解。

  第七单元万以内数的认识

  一、1000以内数的认识

  1、10个一百就是一千。

  2、读数时,要从高位读起。百位上是几就几百,十位上几就几十,个位上是几就读几中间有一个0,就读“零”,末尾不管有几个0,都不读。

  3、写数时,要从高位写起,几个百就在百位写几,几个十就在十位写几,几个一就在个位写几,哪一位上一个数也没有就写0占位。

  4、数的组成:看每个数位上是几,就由几个这样的计数单位组成。

  5、认识算盘,一颗上珠是5,一颗下珠是1。

  二、10000以内数的认识

  1、10个一千是一万。

  2、万以内数的读法和写法与1000以内的数读法和写法相同。

  3、最小两位数是10,最大的两位数是99;

  最小三位数是100,最大的三位数是999;

  最小四位数是1000,最大的四位数是9999;

  最小的五位数是10000,最大的五位数是99999。

  三、整百、整千数加减法

  1、整百、整千加减法的计算方法。

  (1)把整百、整千数看成几个百,几个千,然后相加减。

  (2)先把0前面的数相加减,再在得数末尾添上与整百、整千数相同个数的0。

  2、估算

  把数看做它的近似数再计算。

  四、10000以内数的大小比较的方法:

  (1)位数多的数就大,例如999<1000

  (2)如果位数相同,就比较最高位上的数字,数字大的这个数就大,反之就小;

  (3)如果最高位上的数字相同,就比较下一位上的数,依次类推。

  第八单元克、千克

  1.(千克)和(克)都是国际上通用的质量单位。计量比较重的物品,常用“千克”(kg)作单位。

  2、称较轻的物品的质量时,用“克”作单位;称较重的物品的质量时,用“千克”作单位。

  3、一个两分的硬币约是1克。两袋500克的盐约是1千克。

  4、1千克=1000克1kg=1000g.进率是1000。

  5、计算或者比较大小时,如果单位不同,就需要把单位统一,一般统一成单位“克”。

  估计物品有多重,要结合物品的大小、质地等因素。

  物品的重量和物品的材质没有关系:1千克的棉花和1千克的铁一样重。

  第九单元数学广角-推理

  1、有语文、数学和品德与生活三本书,小红、小丽和小刚各拿一本。

  推理时,先根据条件确定必然情况,再用排除法确定其他情况。

  2、填数游戏和扫雷游戏

  当然,这么多的内容,当然不是让孩子一下子就记住。寒假期间,孩子要先把乘法口诀背熟,能够根据乘法口诀写出四道算式或两道算式。

  此外,还可以做一些加减混合、乘加、乘减的应用题。

  小学二年级下册数学必背内容

  (一)有余数的除法

  ①商要对着被除数的个位。②余数要比除数小。

  被除数÷除数=商…….余数

  被除数=除数×商+余数

  1、()÷()=5……6,除数最小是(),被除数最小是()。

  2、在应用题中,余数单位和被除数单位相同。

  (二)万以内数的认识

  1、数位顺序表按(从右往左)的顺序,依次是(个位)、(十位)、(百位)、(千位)、(万位)。

  2、10个一是十,10个十是一百,10个一百是一千,10个一千是一万。

  3、计数单位有:一、十、百、千、万,相邻两个计数单位间的进率是10.

  4、最小的一位数是1,最大的一位数是9;最小的两位数是10,最大的两位数是99;最小的三位数是100,最大的三位数是999;最小的四位数是1000,最大的四位数是9999;最大的五位数是10000.

  5、读数、写数都从高位起。

  (三)长度单位

  1、1千米=(1000)米

  1米=(10)分米,1分米=(10)厘米,1厘米=(10)毫米,

  1米=(100)厘米,1分米=(100)毫米。

  2、长度单位转换时,大单位转小单位,数字增大(添“0”),小单位转大单位,数字减小(去“0”)。

  3、手臂打开大约1米;(1拃)长大约10厘米,也是1分米;

  (2分硬币)大约有1毫米厚;10张纸的厚度大约1毫米。

  4、在表示较远距离时,用(千米)作单位,如(各类交通工具的时速),(马拉松长跑的路程),(铁路长),(两个城市间的路程)等。

  5、用米作单位常见的有描述(树高)、(楼高)、(桥长)等。

  (四)三位数的加法和减法

  1、求“和”用加法;求“差”用减法;求“积”用乘法;求“商”用除法。

  2、加数=和-另一个加数

  被减数—减数=差

  被减数=减数+差

  减数=被减数-差

  3、笔算三位数加减法时,从(个位)算起,相加满十向(前一)位进1。相减,不够减向(前一)位借1,借1作10。

  (五)图形

  1、长方形:4条边,(对边)相等,4个角都是(直角)。较长的边叫长(2条长),较短的.边叫宽(2条宽)。

  2、正方形:(四条边)都相等,4个角都是(直角)。

  3、平行四边形:有4条边,(对边)相等;有4个角,(对角)相等;有2个钝角和2个锐角,还具有不稳定性。

  (六)时间单位

  1、钟面上有(12)个大格,(60)个小格。

  时针走(1大格)是(1时);

  分针走(1小格)是(1分),走一大格是(5分)。

  秒针走(1小格)是1秒,走一大格是(5秒)。

  2、时针走(1大格)是(1时),这时分针正好走(1圈),是(60)分,所以1时=(60)分。

  3、分针走(1小格)是(1分),这时秒针正好走(1圈),是(60)秒。所以1分=(60)秒。

  4、结束时间-开始时间=经过时间

  结束时间-经过时间=开始时间

  开始时间+经过时间=结束时间

  5、在求时间时,可以列竖式计算。

  减法时:要先算(分减分),再算(时减时),当“分”不够减时,向(时)借1当60分,60分与原来的“分”合在一起再减。

  加法时:先算(分加分),再算(时加时),当分加分超过60分时,要把其中的60分转化为1时。

  7时10分-3是50分=()2时40分+3时50分=()

  6、通常下午的时间转化成24时计时法,例如

  下午3时20分就是(15时20分)

  7、描述50米、100米跑步的时间要用(秒)作单位。

  8、时针从数字3走到数字8经过时间是()。

  分针从数字3走到数字8经过时间是()。

  秒针从数字3走到数字8经过时间是()。

小学三年级数学知识点总结第7篇

  

  第二单元 位置

  1. 竖排叫列,确定第几列一般从(左)往(右)数;

  横排叫行,确定第几行一般从(前)往(后)数。

  2.用数对描述位置要用(两个)数据,列在前,行在后,中间用逗号隔开,外面加一个小括号。如数对(3,4) 3表示第3列,4表示第4行。

  3.向右平移,行不变,平移几个单位,列就增加几个单位。

  向左平移,行不变,平移几个单位,列就减少几个单位。

  向上平移,列不变,平移几个单位,行就增加几个单位。

  向下平移,列不变,平移几个单位,行就减少几个单位。

  一、 小数乘整数

  1.小数乘整数意义:求几个相同加数的和的简便运算。

  如:3.6×5表示5个3.6的和是多少(3.6+3.6+3.6+3.6+3.6),或者3.6的5倍是多少。

  2.小数乘整数的计算方法:先把小数扩大成(整数),按整数乘法的法则算出(积);再看(因数)中一共有几位小数,就从积的(右边)起数出几位,点上(小数点)。

  二、 小数乘小数

  1.小数乘小数的意义:就是求这个数的几分之几是多少。

  如:2.6×0.4就是求2.4的十分之四是多少。8.5×3.4就是求8.5的3.4倍是多少。

  2.小数乘法的计算方法:先按(整数)乘法算出(积),再点(小数点);点小数点时,看(因数)中一共有几位小数,就从积的(右边)起数出几位,点上(小数点)。

  注意:乘得积的小数位数不够时,要在前面用0补足,再点小数点;小数末尾有0的,竖式

  计算点完小数点后把0划掉,横式不用写0。

  三、积的近似数

  1.先按(小数)乘法算出积;

  2.根据需要,按(四舍五入)法保留一定的小数位数。

  注意:计算钱数,保留两位小数,表示计算到分;保留一位小数,表示计算到角。

  四、整数乘法运算定律推广到小数

  1.整数乘法的交换律、结合律、分配律,对于小数乘法也(适用)。

  2.小数四则运算顺序跟整数是一样的:即有括号的'要先算括号里的,没有括号的要先算乘除

  法,后算加减法,同级运算按照从左往右的顺序计算。

  第三单元 小数除法

  一、除数是整数的小数除法

  计算除数是整数的小数除法:小数除以整数,按照(整数除法)的方法去除,商的小数点

  要和(被除数)的小数点(对齐)。如果被除数的整数部分不够除,商(0),点上(小数点),继续除;如果除到被除数的末尾仍有余数,要在(余数)后面添0再除。

  二、一个数除以小数

  计算除数是小数的除法:1.先移动除数的小数点,使它变成(整数);2.除数的小数点向右

  移动(几位),(被除数)的小数点也向(右)移动几位(位数不够的,在被除数的末尾用0补足);3.然后按照除数是整数的小数除法进行计算。

  三、商的近似数

  求商的近似数时,计算到比保留的小数位数多一位,再将最后一位“四舍五入”。

  四、循环小数

  1.定义:一个数的小数部分,从某一位起,一个数字或者几个数字(依次不断)重复出现,这样的小数叫做(循环小数)。依次不断重复出现的数字,叫做这个循环小数的的(循环节)。

  2.循环小数的表示方法:

  一种是用省略号表示,要写出两个完整的循环节,后面标上省略号。如0.3636

  1.746746

  一种是简便形式:只写出一个(循环节),然后在循环节的(首位)和(末位)数字上面各记一个(圆点)。如:

  3.有限小数:小数部分的位数是(有限)的小数是有限小数。

  无限小数:小数部分的位数是无限的小数是(无限小数)。 循环小数都是无限小数。 规律:

  1. 一个数(0除外)乘大于1的数,积比原来的数大; 如4.25×1.1 > 4.25

  一个数(0除外)乘小于1的数,积比原来的数小。 如4.25×0.9 < 4.25

  2. 一个数(0除外)除大于1的数,商比原来的数小; 如4.25÷1.1 < 4.25

  一个数(0除外)除小于1的数,商比原来的数大。 如4.25÷0.9 > 4.25

  由此可得4.25×1.1 > 4.25÷1.1

  4.25×0.9 < 4.25÷0.9

  3. 被除数的整数部分大于除数,商大于1; 如 87.4÷46,因为87>46,所以87.4÷46>1。 被除数的整数部分小于除数,商小于1。 如 8.5÷17,因为8<17,所以8.5÷17<1。

  4. 商不变性质:被除数和除数(同时扩大)或(同时缩小)相同的倍数,商不变。 被除数(扩大)或(缩小)多少倍,除数不变,商也(扩大)或(缩小)多少倍。 被除数不变,除数(扩大)或(缩小)多少倍,商反而(缩小)或(扩大)多少倍。 5. 一个因数扩大多少倍,另一个因数缩小相同的倍数,积不变。

  一个因数不变,另一个因数扩大(缩小)多少倍,积也扩大(缩小)多少倍。

  两个因数都扩大(缩小),扩大的倍数相乘是多少倍,积也扩大(缩小)多少倍。

  

  第四单元 可能性

  1. 表示可能性:可能、不可能、一定(肯定)。

  2. 数量越多,可能性越大;

  数量越少,可能性越小。

小学三年级数学知识点总结第8篇

  对知识与方法进行归纳总结是系统复习的中心工作。下面就是小编整理的八年级上册数学知识点总结,一起来看一下吧。

  一、轴对称图形

  1、把一个图形沿着一条直线折叠,如果直线两旁的部分能够完全重合,那么这个图形就叫做轴对称图形。这条直线就是它的对称轴。这时我们也说这个图形关于这条直线(成轴)对称。

  2、把一个图形沿着某一条直线折叠,如果它能与另一个图形完全重合,那么就说这两个图关于这条直线对称。这条直线叫做对称轴。折叠后重合的点是对应点,叫做对称点。

  3、轴对称图形和轴对称的区别与联系。

  4、轴对称的性质。

  ①关于某直线对称的两个图形是全等形。

  ②如果两个图形关于某条直线对称,那么对称轴是任何一对对应点所连线段的垂直平分线。

  ③轴对称图形的对称轴,是任何一对对应点所连线段的垂直平分线。

  ④如果两个图形的对应点连线被同条直线垂直平分,那么这两个图形关于这条直线对称。

  二、线段的垂直平分线

  1、经过线段中点并且垂直于这条线段的直线,叫做这条线段的垂直平分线,也叫中垂线。

  2、线段垂直平分线上的点与这条线段的两个端点的距离相等。

  3、与一条线段两个端点距离相等的点,在线段的垂直平分线上。

  三、用坐标表示轴对称小结:

  在平面直角坐标系中,关于x轴对称的点横坐标相等,纵坐标互为相反数。关于y轴对称的点横坐标互为相反数,纵坐标相等。

  2、三角形三条边的垂直平分线相交于一点,这个点到三角形三个顶点的距离相等。

  四、(等腰三角形)知识点回顾

  1、等腰三角形的性质。

  ①、等腰三角形的两个底角相等。(等边对等角)

  ②、等腰三角形的.顶角平分线、底边上的中线、底边上的高互相重合。(三线合一)

  2、等腰三角形的判定:

  如果一个三角形有两个角相等,那么这两个角所对的边也相等。(等角对等边)

  五、(等边三角形)知识点回顾

  1、等边三角形的性质:

  等边三角形的三个角都相等,并且每一个角都等于600。

  2、等边三角形的判定:

  ①三个角都相等的三角形是等边三角形。

  ②有一个角是600的等腰三角形是等边三角形。

  3、在直角三角形中,如果一个锐角等于300,那么它所对的直角边等于斜边的一半。

  1、等腰三角形的性质

  (1)等腰三角形的性质定理及推论:

  定理:等腰三角形的两个底角相等(简称:等边对等角)

  推论1:等腰三角形顶角平分线平分底边并且垂直于底边。即等腰三角形的顶角平分线、底边上的中线、底边上的高重合。

  推论2:等边三角形的各个角都相等,并且每个角都等于60°。

  (2)等腰三角形的其他性质:

  ①等腰直角三角形的两个底角相等且等于45°

  ②等腰三角形的底角只能为锐角,不能为钝角(或直角),但顶角可为钝角(或直角)。

  ③等腰三角形的三边关系:设腰长为a,底边长为b,则

  ④等腰三角形的三角关系:设顶角为顶角为∠A,底角为∠B、∠C,则∠A=180°—2∠B,∠B=∠C=

  2、等腰三角形的判定

  等腰三角形的判定定理及推论:

  定理:如果一个三角形有两个角相等,那么这两个角所对的边也相等(简称:等角对等边)。这个判定定理常用于证明同一个三角形中的边相等。

  推论1:三个角都相等的三角形是等边三角形。

  推论2:有一个角是60°的等腰三角形是等边三角形。

  推论3:在直角三角形中,如果一个锐角等于30°,那么它所对的直角边等于斜边的一半。

  等腰三角形的性质与判定

  等腰三角形性质

  等腰三角形判定

  中线

  1、等腰三角形底边上的中线垂直底边,平分顶角;

  2、等腰三角形两腰上的中线相等,并且它们的交点与底边两端点距离相等。

  1、两边上中线相等的三角形是等腰三角形;

  2、如果一个三角形的一边中线垂直这条边(平分这个边的对角),那么这个三角形是等腰三角形。

  角平分线

  1、等腰三角形顶角平分线垂直平分底边;

  2、等腰三角形两底角平分线相等,并且它们的交点到底边两端点的距离相等。

  1、如果三角形的顶角平分线垂直于这个角的对边(平分对边),那么这个三角形是等腰三角形;

  2、三角形中两个角的平分线相等,那么这个三角形是等腰三角形。

  高线

  1、等腰三角形底边上的高平分顶角、平分底边;

  2、等腰三角形两腰上的高相等,并且它们的交点和底边两端点距离相等。

  1、如果一个三角形一边上的高平分这条边(平分这条边的对角),那么这个三角形是等腰三角形;

  2、有两条高相等的三角形是等腰三角形。

  角

  等边对等角

  等角对等边

  边

  底的一半<腰长<周长的一半

  两边相等的三角形是等腰三角形

  4、三角形中的中位线

  连接三角形两边中点的线段叫做三角形的中位线。

  (1)三角形共有三条中位线,并且它们又重新构成一个新的三角形。

  (2)要会区别三角形中线与中位线。

  三角形中位线定理:三角形的中位线平行于第三边,并且等于它的一半。

  三角形中位线定理的作用:

  位置关系:可以证明两条直线平行。

  数量关系:可以证明线段的倍分关系。

  常用结论:任一个三角形都有三条中位线,由此有:

  结论1:三条中位线组成一个三角形,其周长为原三角形周长的一半。

  结论2:三条中位线将原三角形分割成四个全等的三角形。

  结论3:三条中位线将原三角形划分出三个面积相等的平行四边形。

  结论4:三角形一条中线和与它相交的中位线互相平分。

  结论5:三角形中任意两条中位线的夹角与这夹角所对的三角形的顶角相等。

小学三年级数学知识点总结第9篇

  导读:人们常常对已做过的工作进行回顾、分析,并提到理论高度,肯定已取得的成绩,指出应汲取的教训,以便今后做得更好。下面是小编整理的苏教版三年级科学下册知识点总结,欢迎阅读!

  第一单元植物的生长变化

  1.绿色开花植物一般是用种子繁殖后代的。

  2.播种前,挑选那些饱满、没有受过损伤的种子的过程叫选种。

  3.种子萌发先长根,再长茎、叶,根总是向下生长的,根的生长速度很快。

  4.植物的根能够吸收水分和矿物质,还能将植物固定在土壤中。

  5.植物的`绿叶可以制造植物生长所需要的养料,植物生长所需的养料是由植物绿色的叶依靠太阳提供的能量,利用水和二氧化碳制成的。

  6.绿色开花植物如凤仙花的身体由根、茎、叶、花、果实、种子六个部分组成。

  7.植物的生长过程中需要阳光、温度、土壤和适宜的水分等条件。

  8.植物的茎具有支撑植物和运输水分和养料的作用。能从下到上将根吸收的水分和矿物质运输到植物的各个部分;从上到下将植物制造的养料运输到植物的各个部分。

  第二单元动物的生命周期

  1.鸡、青蛙、鱼、乌龟等动物都产卵,卵是动物生命的开始。

  2.蚕卵的孵化需要适宜的温度和湿度。在放蚕卵的盒子上要扎些不孔,因为蚕卵需要呼吸。

  3.蚕宝宝最爱吃的食物是桑叶,蚕能吐丝结茧,蚕宝宝的生长过程中,要经过四次蜕皮,蚕和蝴蝶等昆虫的一生要经过卵、幼虫、蛹、成虫四个时期,蚕蛹被茧包裹,茧能起到保护蛹的作用。蚕蛹经过10-15天,会变成蚕蛾,蚕蛾是蚕的成虫,分雌蛾和雄蛾。雌蛾和雄蛾交配后,雌蛾产卵繁殖后代。

  4.养蚕、抽取蚕丝,是我国的伟大发明之一。远在4000多年以前,我国劳动人民就开始养蚕,利用蚕丝织成华丽的丝绸和各种丝织品,并远销国外。

  5.蚕的一生是不断生长变化的,要经历蚕卵、蚕、蛹、蚕蛾四个不同形态的变化阶段。

  6.蚕的身体分为头、胸、腹三部分,胸部有三对足。蚕长到一定阶段会长出新皮,换下旧皮,这叫蜕皮。

  7.蚕的一生会经历出生、生长发育、繁殖、死亡四个阶段,这一过程称为蚕的生命周期,一般大约为56天;自然界中的动物都有生命周期,也都要经历出生、生长发育、繁殖、死亡四个阶段;人也要经历出生、生长发育、繁殖、死亡四个阶段;人和动物一样也具有生命周期。

  8.影响蚕生命和变化的因素有食物、气温、有害气体、疾病等。

  第三单元磁铁

  1.磁铁能吸引铁制的物体,这种性质叫磁铁。磁铁隔着一些物体也能吸铁。

  2.磁铁上磁力最强的部分叫磁极,磁铁有两个磁极。一个磁铁摔断了也有两个磁极。

  3.磁铁能指南北方向。指南的磁极叫南极,用“S”表示;指北的磁极叫北极,用“N”表示。

  4.磁铁的同极相互排斥,异极相互吸引,两个磁极的作用是相互的。磁悬浮列车就是根据同极相互排斥的原理制造的。

  5.两个或多个磁铁吸在一直,磁力大小会发生改变。

  6.指南针是作用磁铁能指南北的性质制成的指示方向的仪器。钢针经过磁铁沿一个方向磨擦可以变成磁铁。

  7.被称为世界上最早的指南针叫司南,是我国四大发明之一。

  8.磁铁的用途和它的性质是相联系的。

  9.检验没有标明南北极的磁铁可以采用悬挂法、指南针验测法、磁铁检测等。

小学三年级数学知识点总结第10篇

  总结知识点,学习、复习起来更加方便。下面是七年级上册数学知识点总结,希望对大家有帮助。

  第一章 有理数

  1.1正数和负数

  ①把0以外的数分为正数和负数。0是正数与负数的分界。

  ②负数:比0小的数 正数:比0大的数 0既不是正数,也不是负数

  1.2有理数

  1.2.1有理数

  ①正整数,0,负整数,正分数,负分数都可以写成分数的形式,这样的数称为有理数。

  ②所有正整数组成正整数集合,所有负整数组成负整数集合。正整数,0,负整数统称整数。

  1.2.2数轴

  ①具有原点,正方向,单位长度的直线叫数轴。

  1.2.3相反数

  ①只有符号不同的数叫相反数。

  ②0的相反数是0 正数的相反数是负数 负数的相反数是正数

  1.2.4绝对值

  ①绝对值 |a|

  ②性质:正数的绝对值是它的本身

  负数的绝对值的它的相反数

  0的绝对值的0

  1.2.5数的大小比较

  ①数学中规定:在数轴上表示有理数,它们从左到右的顺序,就是从小到大的顺序,即左边的数小于右边的数。

  ②正数大于0,0大于负数,正数大于负数。两个负数,绝对值大的反而小。

  1.3有理数的加减法

  1.3.1有理数的加法

  ①同号两数相加,取相同的符号,并把绝对值相加。

  ②绝对值不相等的异号两数相加,去绝对值较大的加数的符号,并用较大的绝对值减去较小的绝对值,互为相反数的两个数相加得0。

  ③一个数同0相加,仍得这个数。

  ④加法交换律:两个数相加,交换加数的位置,和不变。a+b=b+a

  ⑤加法结合律:三个数相加,先把前两个数相加,或者先把后两个数相加,和不变。(a+b)+c=(a+c)+b

  1.3.2有理数的减法

  ①减去一个数,等于加这个数的相反数。a-b=a+(-b)

  1.4有理数的乘除法

  1.4.1有理数的乘法

  ①两数相乘,同号得正,异号的负,并把绝对值相乘。

  ②任何数同0相乘,都得0。

  ③乘积是1的两个数互为倒数。

  ④几个不是0的数相乘,负因数的个数的偶数时,积是正数;负因数的个数是奇数时,积是负数。

  ⑤乘法交换律:两个数相乘,交换因数的位置,积相等。ab=ba

  ⑥乘法结合律:三个数相乘,先把前两个数相乘,或者先把后两个数相乘,积相等。(ab)c=(ac)b

  ⑦乘法分配律:一个数同两个数的和相乘,等于把这个数分别同这两个数相乘,再把积相加。a(b+c)=ab+ac

  1.4.2有理数的除法

  ①除以一个不等0的数,等于乘以这个数的倒数。

  ②两数相除,同号得正,异号得负,并把绝对值相除。0除以任何一个不等于0的数,都得0

  ③乘除混合运算往往先将除法化成乘法,然后确定积的符号,最后求出结果。

  ④有理数的加减乘除混合运算,如无括号指出先做什么运算,则按照‘先乘除,后加减 的顺序进行。

  1.5有理数的乘方

  1.5.1乘方

  ①求n个相同因数的积的运算,叫做乘方,乘方的结果叫做幂。a叫做底数,n 叫做指数。

  ②负数的奇次幂是负数,负数的偶次幂的正数。

  ③正数的任何次幂都是正数,0的任何正整数次幂都是0。

  ④做有理数的混合运算时,应注意以下运算顺序:

  1.先乘方,再乘除,最后加减;

  2.同级运算,从左到右进行;

  3.如有括号,先做括号内的运算,按小括号,中括号,大括号依次进行。

  1.5.2科学记数法。

  ①把一个大于10的数表示成的形式(其中a是整数数位只有一位的数,n是正整数),使用的是科学记数法。

  1.5.3近似数

  ①一个数只是接近实际人数,但与实际人数还有差别,它是一个近似数。

  ②近似数与准确数的接近程度,可以用精确度表示。

  ③从一个数的左边第一个非0数字起,到末位数字止,所有的数字都是这个数的有效数字。

  第二章 整式的加减

  2.1整式

  ①单项式:表示数或字母积的式子

  ②单项式的系数:单项式中的数字因数

  ③单项式的次数:一个单项式中,所有字母的指数和

  ④几个单项式的和叫做多项式。每个单项式叫做多项式的项,不含字母的项叫做常数项。

  ⑤多项式里次数最高项的次数,叫做这个多项式的次数。

  ⑥单项式与多项式统称整式。

  2.2 整式的加减

  ①同类项:所含字母相同,而且相同字母的次数相同的单项式。

  ②把多项式中的同类项合并成一项,叫做合并同类项。

  ③合并同类项后,所得项的系数是合并前各同类项的系数的和,且字母部分不变。

  ④如果括号外的因数是正数,去括号后原括号内各项的`符号与原来的符号相同。

  ⑤如果括号外的因数是负数,去括号后原括号内各项的符号与原来的符号相反。

  ⑥一般地,几个整式相加减,如果有括号就先去括号,然后再合并同类项。

  第三章 一元一次方程

  3.1从算式到方程

  3.1.1一元一次方程

  ①方程:含有未知数的等式

  ②一元一次方程:只含有一个未知数,而且未知数的次数是1的方程。

  ③方程的解:使方程中等号左右两边相等的未知数的值

  ④求方程解的过程叫做解方程。

  ⑤分析实际问题中的数量关系,利用其中的相等关系列出方程,是用数学解决实际问题的一种方法。

  3.1.2等式的性质

  ①等式的性质1:等式两边加(或减)同一个数(或式子),结果仍相等。

  ②等式的性质2:等式两边乘同一个数,或除以同一个不为0的数,结果仍相等。

  3.2解一元一次方程(—)合并同类项与移项

  ①把等式一边的某项变号后移到另一边,叫做移项。

  3.3解一元一次方程(二) 去括号与去分母

  ①一般步骤:1.去分母

  2.去括号

  3.移项

  4.合并同类项

  5.系数化为一

  3.4实际问题与一元一次方程

  利用方程不仅能求具体数值,而且可以进行推理判断。

  第四章 图形认识初步

  4.1多姿多彩的图形

  4.1.1几何图形

  ①把实物中抽象出的各种图形统称为几何图形。

  ②几何图形的各部分不都在同一平面内,是立体图形。

  ③有些几何图形的各部分都在同一平面内,它们是平面图形。

  ④常常用从不同方向看到的平面图形来表示立体图形。(主视图,俯视图,左视图)。

  ⑤有些立体图形是由一些平面图形围成的,将它们的表面适当剪开,可以展开成平面图形,这样的平面图形称为相应立体图形的展开图。

  4.1.2点,线,面,体

  ①几何体也简称体。

  ②包围着体的是面。面有平的面和曲的面两种。

  ③面和面相交的地方形成线。(线有直线和曲线)

  ④线和线相交的地方是点。(点无大小之分)

  ⑤点动成线 ,线动成面,面动成体。

  ⑥几何图形都是由点,线,面,体组成的,点是构成图形的基本元素。

  ⑦点,线,面,体经过运动变化,就能组合成各种各样的几何图形,形成多姿多彩的图形世界。

  ⑧线段的比较:1.目测法 2.叠合法 3.度量法

  4.2 直线,射线,线

  ①经过两点有一条直线,并且只有一条直线。

  ②两点确定一条直线。

  ③当两条不同的直线有一个公共点时,就称这两条直线相交,这个公共点叫做它们的交点。

  ④射线和线段都是直线的一部分。

  ⑤把线段分成相等的两部分的点叫做中点。

  ⑥两点的所有连线中,线段最短。(两点之间,线段最短)

  ⑦连接两点间的线段的长度,叫做这两点的距离。

  4.3 角

  4.3.1角

  ①角也是一种基本的几何图形。

  ②有公共端点的两条射线组成的图形叫做角,这个公共端点是角的顶点,这两条射线是角的两条边。角可以看作由一条射线绕着它的端点旋转而形成的图形。

  ③把一个周角360等分,每一分就是1度的角,记作1°;把1度的角60等分,每一份叫做1分的角,记作1′;把1分的角60等分,每一份叫做1秒的角,记作1″。

  ④角的度,分,秒是60进制的,这和计量时间的时,分,秒是一样的。

  ⑤以度,分,秒为单位的角的度量制,叫做角度制。

  4.3.2角的比较与运算

  ①从一个角的顶点出发,把这个角分成相等的两个角的射线,叫做这个角的平分线。

  4.3.3余角和补角

  ①两个角的和等于90°(直角),就说这两个角互为余角,即其中每一个角是另一个角的余角。

  ②两个角的和等于180°(平角),就说这两个角互为补角,即其中一个角是另一个角的补角。

  ③等角的补角相等。

  ④等角的余角相等。

小学三年级数学知识点总结第11篇

  总结是指对某一阶段的工作、学习或思想中的经验或情况进行分析研究,做出带有规律性结论的书面材料,它可以明确下一步的工作方向,少走弯路,少犯错误,提高工作效益,不如静下心来好好写写总结吧。那么总结应该包括什么内容呢?以下是小编为大家整理的关于八年级数学三角形知识点总结,欢迎阅读与收藏。

  1、线段垂直平分线的性质定理及逆定理

  垂直于一条线段并且平分这条线段的直线是这条线段的垂直平分线。

  线段垂直平分线的性质定理:线段垂直平分线上的点和这条线段两个端点的距离相等。逆定理:和一条线段两个端点距离相等的点,在这条线段的垂直平分线上。

  2、角的平分线及其性质

  一条射线把一个角分成两个相等的角,这条射线叫做这个角的平分线。角的平分线有下面的性质定理:

  (1)角平分线上的点到这个角的两边的距离相等。

  (2)到一个角的两边距离相等的点在这个角的平分线上。

  垂线的性质:

  性质1:过一点有且只有一条直线与已知直线垂直。

  性质2:直线外一点与直线上各点连接的'所有线段中,垂线段最短。简称:垂线段最短。2、三角形中的主要线段

  (1)三角形的一个角的平分线与这个角的对边相交,这个角的顶点和交点间的线段叫做三角形的角平分线。

  (2)在三角形中,连接一个顶点和它对边的中点的线段叫做三角形的中线。

  (3)从三角形一个顶点向它的对边做垂线,顶点和垂足之间的线段叫做三角形的高线(简称三角形的高)。

  3、三角形的稳定性

  三角形的形状是固定的,三角形的这个性质叫做三角形的稳定性。三角形的这个性质在生产生活中应用很广,需要稳定的东西一般都制成三角形的形状。

  (1)三角形三边关系定理:三角形的两边之和大于第三边。推论:三角形的两边之差小于第三边。

  (2)三角形三边关系定理及推论的作用:

  ①判断三条已知线段能否组成三角形

  ②当已知两边时,可确定第三边的范围。

  ③证明线段不等关系。

  三角形的内角和定理:三角形三个内角和等于180°。推论:

  ①直角三角形的两个锐角互余。

  ②三角形的一个外角等于和它不相邻的来两个内角的和。③三角形的一个外角大于任何一个和它不相邻的内角。

  注:在同一个三角形中:等角对等边;等边对等角;大角对大边;大边对大角。等角的补角相等,等角的余角相等。