有理数集与整数集的一个重要区别是,有理数集是稠密的,而整数集是密集的。将有理数依大小顺序排定后,任何两个有理数之间必定还存在其他的有理数,这就是稠密性。整数集没有这一特性,两个相邻的整数之间就没有其他的整数了。
有理数是实数的紧密子集:每个实数都有任意接近的有理数。一个相关的性质是,仅有理数可化为有限连分数。依照它们的序列,有理数具有一个序拓扑。有理数是实数的(稠密)子集,因此它同时具有一个子空间拓扑。
学好数学的思维
转化思维
转化思维,既是一种方法,也是一种思维。转化思维,是指在解决问题的过程中遇到障碍时,通过改变问题的方向,从不同的角度,把问题由一种形式转换成另一种形式,寻求最佳方法,使问题变得更简单、清晰。
逻辑思维
逻辑是一切思考的基础。逻辑思维是人们在认识过程中借助于概念、判断、推理等思维形式对事物进行观察、比较、分析、综合、抽象、概括、判断、推理的思维过程。逻辑思维,在解决逻辑推理问题时使用广泛。
逆向思维
逆向思维也叫求异思维,它是对司空见惯的似乎已成定论的事物或观点反过来思考的一种思维方式。敢于“反其道而思之”,让思维向对立面的方向发展,从问题的相反面深入地进行探索,树立新思想,创立新形象。
第5篇小学六年级数学知识点总结
在平平淡淡的学习中,大家对知识点应该都不陌生吧?知识点也可以理解为考试时会涉及到的知识,也就是大纲的分支。为了帮助大家更高效的学习,以下是小编整理的九年级数学圆的知识点归纳总结,仅供参考,大家一起来看看吧。
一点与圆的位置关系及其数量特征:
如果圆的半径为r,点到圆心的距离为d,则①点在圆上<===>d=r;②点在圆内<===>dd>r。
二圆的对称性:
1与圆相关的概念:
④同心圆:圆心相同,半径不等的两个圆叫做同心圆。
⑤等圆:能够完全重合的两个圆叫做等圆,半径相等的两个圆是等圆。
⑥等弧:在同圆或等圆中,能够互相重合的弧叫做等弧。
⑦圆心角:顶点在圆心的角叫做圆心角。
⑧弦心距:从圆心到弦的距离叫做弦心距。
2圆是轴对称图形,直径所在的直线是它的对称轴,圆有无数条对称轴。
3垂径定理:垂直于弦的直径平分这条弦,并且平分弦所对的两条弧。
推论:平分弦(不是直径)的.直径垂直于弦,并且平分弦所对的两条弧。
说明:根据垂径定理与推论可知对于一个圆和一条直线来说,如果具备:
①过圆心;②垂直于弦;③平分弦;④平分弦所对的优弧;⑤平分弦所对的劣弧。
上述五个条件中的任何两个条件都可推出其他三个结论。
4定理:在同圆或等圆中,相等的圆心角所对弧相等、所对的弦相等、所对的弦心距相等。
推论:在同圆或等圆中,如果两个圆心角、两条弧、两条弦或两条弦的弦心距中有一组量相等,那么它们所对应的其余各组量都分别相等。
三圆周角和圆心角的关系:
1圆周角的定义:顶点在圆上,并且两边都与圆相交的角,叫做圆周角。
2圆周角定理;一条弧所对的圆周角等于它所对的圆心角的一半。
推论1:同弧或等弧所对圆周角相等;反之,在同圆或等圆中,相等圆周角所对弧也相等;
推论2:半圆或直径所对的圆周角是直角;90°的圆周角所对的弦是直径;
四确定圆的条件:
1理解确定一个圆必须的具备两个条件:
经过一点可以作无数个圆,经过两点也可以作无数个圆,其圆心在这个两点线段的垂直平分线上。
2定理:不在同一直线上的三个点确定一个圆。
3三角形的外接圆、三角形的外心、圆的内接三角形的概念:
(1)三角形的外接圆和圆的内接三角形:经过一个三角形三个顶点的圆叫做这个三角形的外接圆,这个三角形叫做圆的内接三角形。
(2)三角形的外心:三角形外接圆的圆心叫做这个三角形的外心。
(3)三角形的外心的性质:三角形外心到三顶点的距离相等。
第6篇小学六年级数学知识点总结
1、读数、写数
1读20以内的数顺数:从小到大的顺序01234567891011121314151617181920
倒数:从大到小的顺序20191817······
单数:1、3、5、7、9······
双数:2、4、6、8、10······
(注:0既不是单数,也不是双数,0是偶数。在生活中说单双数,在数学中说奇偶数。)
2两位数(1)我们生活中经常遇到十个物体为一个整体的情况,实际上十个“1”就是一个“10”,一个“10”就是十个“1”。
如:A:11里有(1)个十和(1)个一;
11里有(11)个一。
12里
12里有(12)个一13里有(1)个十和(3)个一;
13里有(13)个一14里有(1)个十和(4)个一;
14里有(14)个一15里有(1)个十和(5)个一;
15里有(15)个一······
19里有(1)个十和(9)个一;
或者说,19里有(19)个一20里有(2)个十;
20里有(20)个一B:看数字卡片(11~20),说出卡片上的数是由几个十和几个一组成的。
(2)在计数器上,从右边起第一位是什么位?(个位)第2位是什么位?(十位)个位上的1颗珠子表示什么?(表示1个一)十位上的1颗珠子表示什么?(表示1个十)
(3)先读11、12、13、14、15、16、17、18、19、20,再写出来。
如:14,读作:十四,写作:14。个位上是4,表示4个一,十位上数字是1,表示1个十。
2、比较大小和第几
1、给数字娃娃排队
5、6、10、3、20、17,可以按从大到小的顺序排列,也可以按从小到大的顺序排列。
(注意做题时,写一个数字,划去一个,做到不重不漏。)
2、任意取20以内的两个数,能够用谁比谁大或谁比谁小说一句话。
如:16比15大,写出来就是16>159比13小,写出来就是9<13
3、“比”字的用法
看“比”字的后面是谁,比几大1就要在几的基础上加1,比几小1就要在几的基础上减1。
如:比5小2的数是(3),比4多3的数是(7)。
3、几和第几
△▲▲★△☆☆△△△▲★★★☆★
观察图,说说有几个图形?(16个图形)从左数第几位是什么?从右数第几位是什么?把左边三个圈起来;把右边第2个圈起来。
(复习此类知识时,分清左右,同时确定方向;知道几个和第几个的区别。)
4、相邻数
2的前面是1,2的后面是3,2再添上1就是3,3再去掉1就是2,与2相邻的数是1和3。
3的前面是2,3的后面是4,3再添上1就是4,4再去掉1就是3,与3相邻的数是2和4。······
20的前面是19,20的后面是21,······,与20相邻的数是19和21。
5、事物的对比
1.两个事物的对比
比较两个事物的大小、多少、长短、高矮、轻重等,要以其中的一个事物作为参照,或者说以其中的一个事物作为标准,然后再比较,这样就能说另一个事物比作为标准的那个事物大或者小、多或少等。
比长短:常用的方法注意要一端对齐,也可以采用数格比较,或对称比较。
比高矮:注意在同一平面上去比较。
比多少:运用一一对应原则。
2.三个事物比较
可以先两个两个的比较。然后根据比较的结果,得出三个事物比较的结论。
如:A比B重,B比C重,那么可以得到A比C重。A最重,C最轻。
A比B重,A比C重,只能得到A最重,还要比较B和C,才知道谁最轻。
第7篇小学六年级数学知识点总结
第二单元 位置
1. 竖排叫列,确定第几列一般从(左)往(右)数;
横排叫行,确定第几行一般从(前)往(后)数。
2.用数对描述位置要用(两个)数据,列在前,行在后,中间用逗号隔开,外面加一个小括号。如数对(3,4) 3表示第3列,4表示第4行。
3.向右平移,行不变,平移几个单位,列就增加几个单位。
向左平移,行不变,平移几个单位,列就减少几个单位。
向上平移,列不变,平移几个单位,行就增加几个单位。
向下平移,列不变,平移几个单位,行就减少几个单位。
一、 小数乘整数
1.小数乘整数意义:求几个相同加数的和的简便运算。
如:3.6×5表示5个3.6的和是多少(3.6+3.6+3.6+3.6+3.6),或者3.6的5倍是多少。
2.小数乘整数的计算方法:先把小数扩大成(整数),按整数乘法的法则算出(积);再看(因数)中一共有几位小数,就从积的(右边)起数出几位,点上(小数点)。
二、 小数乘小数
1.小数乘小数的意义:就是求这个数的几分之几是多少。
如:2.6×0.4就是求2.4的十分之四是多少。8.5×3.4就是求8.5的3.4倍是多少。
2.小数乘法的计算方法:先按(整数)乘法算出(积),再点(小数点);点小数点时,看(因数)中一共有几位小数,就从积的(右边)起数出几位,点上(小数点)。
注意:乘得积的小数位数不够时,要在前面用0补足,再点小数点;小数末尾有0的,竖式
计算点完小数点后把0划掉,横式不用写0。
三、积的近似数
1.先按(小数)乘法算出积;
2.根据需要,按(四舍五入)法保留一定的小数位数。
注意:计算钱数,保留两位小数,表示计算到分;保留一位小数,表示计算到角。
四、整数乘法运算定律推广到小数
1.整数乘法的交换律、结合律、分配律,对于小数乘法也(适用)。
2.小数四则运算顺序跟整数是一样的:即有括号的'要先算括号里的,没有括号的要先算乘除
法,后算加减法,同级运算按照从左往右的顺序计算。
第三单元 小数除法
一、除数是整数的小数除法
计算除数是整数的小数除法:小数除以整数,按照(整数除法)的方法去除,商的小数点
要和(被除数)的小数点(对齐)。如果被除数的整数部分不够除,商(0),点上(小数点),继续除;如果除到被除数的末尾仍有余数,要在(余数)后面添0再除。
二、一个数除以小数
计算除数是小数的除法:1.先移动除数的小数点,使它变成(整数);2.除数的小数点向右
移动(几位),(被除数)的小数点也向(右)移动几位(位数不够的,在被除数的末尾用0补足);3.然后按照除数是整数的小数除法进行计算。
三、商的近似数
求商的近似数时,计算到比保留的小数位数多一位,再将最后一位“四舍五入”。
四、循环小数
1.定义:一个数的小数部分,从某一位起,一个数字或者几个数字(依次不断)重复出现,这样的小数叫做(循环小数)。依次不断重复出现的数字,叫做这个循环小数的的(循环节)。
2.循环小数的表示方法:
一种是用省略号表示,要写出两个完整的循环节,后面标上省略号。如0.3636
1.746746
一种是简便形式:只写出一个(循环节),然后在循环节的(首位)和(末位)数字上面各记一个(圆点)。如:
3.有限小数:小数部分的位数是(有限)的小数是有限小数。
无限小数:小数部分的位数是无限的小数是(无限小数)。 循环小数都是无限小数。 规律:
1. 一个数(0除外)乘大于1的数,积比原来的数大; 如4.25×1.1 > 4.25
一个数(0除外)乘小于1的数,积比原来的数小。 如4.25×0.9 < 4.25
2. 一个数(0除外)除大于1的数,商比原来的数小; 如4.25÷1.1 < 4.25
一个数(0除外)除小于1的数,商比原来的数大。 如4.25÷0.9 > 4.25
由此可得4.25×1.1 > 4.25÷1.1
4.25×0.9 < 4.25÷0.9
3. 被除数的整数部分大于除数,商大于1; 如 87.4÷46,因为87>46,所以87.4÷46>1。 被除数的整数部分小于除数,商小于1。 如 8.5÷17,因为8<17,所以8.5÷17<1。
4. 商不变性质:被除数和除数(同时扩大)或(同时缩小)相同的倍数,商不变。 被除数(扩大)或(缩小)多少倍,除数不变,商也(扩大)或(缩小)多少倍。 被除数不变,除数(扩大)或(缩小)多少倍,商反而(缩小)或(扩大)多少倍。 5. 一个因数扩大多少倍,另一个因数缩小相同的倍数,积不变。
一个因数不变,另一个因数扩大(缩小)多少倍,积也扩大(缩小)多少倍。
两个因数都扩大(缩小),扩大的倍数相乘是多少倍,积也扩大(缩小)多少倍。
第四单元 可能性
1. 表示可能性:可能、不可能、一定(肯定)。
2. 数量越多,可能性越大;
数量越少,可能性越小。
第8篇小学六年级数学知识点总结
学好数学,要记住的东西很多,下面是七年级上册知识点总结,为大家提供参考。
第一章 有理数
(一)正负数
1.正数:大于0的数。
2.负数:小于0的数。
3.0即不是正数也不是负数。
4.正数大于0,负数小于0,正数大于负数。
(二)有理数
1.有理数:由整数和分数组成的数。包括:正整数、0、负整数,正分数、负分数。可以写成两个整数之比的形式。(无理数是不能写成两个整数之比的形式,它写成小数形式,小数点后的数字是无限不循环的。如:π)
2.整数:正整数、0、负整数,统称整数。
3.分数:正分数、负分数。
(三)数轴
1.数轴:用直线上的点表示数,这条直线叫做数轴。(画一条直线,在直线上任取一点表示数0,这个零点叫做原点,规定直线上从原点向右或向上为正方向;选取适当的长度为单位长度,以便在数轴上取点。)
2.数轴的三要素:原点、正方向、单位长度。
3.相反数:只有符号不同的两个数叫做互为相反数。0的相反数还是0。
4.绝对值:正数的绝对值是它本身,负数的绝对值是它的相反数;0的绝对值是0,两个负数比较大小,绝对值大的反而小。
(四)有理数的加减法
1.先定符号,再算绝对值。
2.加法运算法则:同号相加,取相同符号,并把绝对值相加。异号相加,取绝对值大的加数的符号,并用较大的绝对值减去较小的绝对值。互为相反数的两个数相加得0。一个数同0相加减,仍得这个数。
3.加法交换律:a+b= b+ a 两个数相加,交换加数的位置,和不变。
4.加法结合律:(a+b)+ c = a +(b+ c )三个数相加,先把前两个数相加,或者先把后两个数相加,和不变。
5. ab = a +(b) 减去一个数,等于加这个数的相反数。
(五)有理数乘法(先定积的`符号,再定积的大小)
1.同号得正,异号得负,并把绝对值相乘。任何数同0相乘,都得0。
2.乘积是1的两个数互为倒数。
3.乘法交换律:ab= ba
4.乘法结合律:(ab)c = a (b c)
5.乘法分配律:a(b +c)= a b+ ac
(六)有理数除法
1.先将除法化成乘法,然后定符号,最后求结果。
2.除以一个不等于0的数,等于乘这个数的倒数。
3.两数相除,同号得正,异号得负,并把绝对值相除,0除以任何一个不等于0的数,都得0。
(七)乘方
1.求n个相同因数的积的运算,叫做乘方。写作an。(乘方的结果叫幂,a叫底数,n叫指数)
2.负数的奇数次幂是负数,负数的偶次幂是正数;0的任何正整数次幂都是0。
(八)有理数的加减乘除混合运算法则
1.先乘方,再乘除,最后加减。
2.同级运算,从左到右进行。
3.如有括号,先做括号内的运算,按小括号、中括号、大括号依次进行。
(九)科学记数法、近似数、有效数字。
第二章 整式
(一)整式
1.整式:单项式和多项式的统称叫整式。
2.单项式:数与字母的乘积组成的式子叫单项式。单独的一个数或一个字母也是单项式。
3.系数:一个单项式中,数字因数叫做这个单项式的系数。
4.次数:一个单项式中,所有字母的指数和叫做这个单项式的次数。
5.多项式:几个单项式的和叫做多项式。
6.项:组成多项式的每个单项式叫做多项式的项。
7.常数项:不含字母的项叫做常数项。
8.多项式的次数:多项式中,次数最高的项的次数叫做这个多项式的次数。
9.同类项:多项式中,所含字母相同,并且相同字母的指数也相同的项叫做同类项。
10.合并同类项:把多项式中的同类项合并成一项,叫做合并同类项。
(二)整式加减
整式加减运算时,如果遇到括号先去括号,再合并同类项。
1.去括号:一般地,几个整式相加减,如果有括号就先去括号,然后再合并同类项。
如果括号外的因数是正数,去括号后原括号内各项的符号与原来的符号相同。如果括号外的因数是负数,去括号后原括号内各项的符号与原来的符号相反。
2.合并同类项:把多项式中的同类项合并成一项,叫做合并同类项。
合并同类项后,所得项的系数是合并前各同类项的系数的和,且字母部分不变
第三章 一元一次方程
分析实际问题中的数量关系,利用其中的相等关系列出方程,是用数学解决实际问题的一种方法。
(一)方程:先设字母表示未知数,然后根据相等关系,写出含有未知数的等式叫方程。
(二)一元一次方程:
1.一元一次方程:方程里只含有一个未知数(元),未知数的次数都是1,这样的方程叫做一元一次方程。
2.解:求出的方程中未知数的值叫做方程的解。
(二)等式的性质
1.等式两边加(或减)同一个数(或式子),结果仍相等。
如果a= b,那么a± c= b± c
2.等式两边乘同一个数,或除以同一个不为0的数,结果仍相等。
如果a= b,那么a c= b c;
如果a= b,(c0),那么a ∕c = b ∕ c。
(三)解方程的步骤
解一元一次方程的步骤:去分母、去括号、移项、合并同类项,未知数系数化为1。
1.去分母:把系数化成整数。
2.去括号
3.移项:把等式一边的某项变号后移到另一边。
4.合并同类项
5.系数化为1
第四章 图形认识初步
一、图形认识初步
1.几何图形:把从实物中抽象出来的各种图形的统称。
2.平面图形:有些几何图形的各部分都在同一平面内,这样的图形是平面图形。
3.立体图形:有些几何图形的各部分不都在同一平面内,这样的图形是立体图形。
4.展开图:有些立体图形是由一些平面图形围成的,将它们的表面适当剪开,可以展开成平面图形,这样的平面图形称为相应立体图形的展开图。
5.点,线,面,体
①图形是由点,线,面构成的。
②线与线相交得点,面与面相交得线。
③点动成线,线动成面,面动成体。
二、直线、线段、射线
1.线段:线段有两个端点。
2.射线:将线段向一个方向无限延长就形成了射线。射线只有一个端点。
3.直线:将线段的两端无限延长就形成了直线。直线没有端点。
4.两点确定一条直线:经过两点有一条直线,并且只有一条直线。
5.相交:两条直线有一个公共点时,称这两条直线相交。
6.两条直线相交有一个公共点,这个公共点叫交点。
7.中点:M点把线段AB分成相等的两条线段AM与MB,点M叫做线段AB的中点。
8.线段的性质:两点的所有连线中,线段最短。(两点之间,线段最短)
9.距离:连接两点间的线段的长度,叫做这两点的距离。
三、角
1.角:有公共端点的两条射线组成的图形叫做角。
2.角的度量单位:度、分、秒。
3.角的度量与表示:
①角由两条具有公共端点的射线组成,两条射线的公共端点是这个角的顶点。
②一度的1/60是一分,一分的1/60是一秒。角的度、分、秒是60进制。
4.角的比较:
①角也可以看成是由一条射线绕着他的端点旋转而成的。
②平角和周角:一条射线绕着他的端点旋转,当终边和始边成一条直线时,所成的角叫做平角。始边继续旋转,当他又和始边重合时,所成的角叫做周角。平角等于180度。周角等于360度。直角等于90度。
③平分线:从一个角的顶点引出的一条射线,把这个角分成两个相等的角,这条射线叫做这个角的平分线。
④工具:量角器、三角尺、经纬仪。
5.余角和补角
①余角:两个角的和等于90度,这两个角互为余角。即其中每一个是另一个角的余角。
②补角:两个角的和等于180度,这两个角互为补角。即其中一个是另一个角的补角。
③补角的性质:等角的补角相等
④余角的性质:等角的余角相等
第9篇小学六年级数学知识点总结
对知识与方法进行归纳总结是系统复习的中心工作。下面就是小编整理的八年级上册数学知识点总结,一起来看一下吧。
一、轴对称图形
1、把一个图形沿着一条直线折叠,如果直线两旁的部分能够完全重合,那么这个图形就叫做轴对称图形。这条直线就是它的对称轴。这时我们也说这个图形关于这条直线(成轴)对称。
2、把一个图形沿着某一条直线折叠,如果它能与另一个图形完全重合,那么就说这两个图关于这条直线对称。这条直线叫做对称轴。折叠后重合的点是对应点,叫做对称点。
3、轴对称图形和轴对称的区别与联系。
4、轴对称的性质。
①关于某直线对称的两个图形是全等形。
②如果两个图形关于某条直线对称,那么对称轴是任何一对对应点所连线段的垂直平分线。
③轴对称图形的对称轴,是任何一对对应点所连线段的垂直平分线。
④如果两个图形的对应点连线被同条直线垂直平分,那么这两个图形关于这条直线对称。
二、线段的垂直平分线
1、经过线段中点并且垂直于这条线段的直线,叫做这条线段的垂直平分线,也叫中垂线。
2、线段垂直平分线上的点与这条线段的两个端点的距离相等。
3、与一条线段两个端点距离相等的点,在线段的垂直平分线上。
三、用坐标表示轴对称小结:
在平面直角坐标系中,关于x轴对称的点横坐标相等,纵坐标互为相反数。关于y轴对称的点横坐标互为相反数,纵坐标相等。
2、三角形三条边的垂直平分线相交于一点,这个点到三角形三个顶点的距离相等。
四、(等腰三角形)知识点回顾
1、等腰三角形的性质。
①、等腰三角形的两个底角相等。(等边对等角)
②、等腰三角形的.顶角平分线、底边上的中线、底边上的高互相重合。(三线合一)
2、等腰三角形的判定:
如果一个三角形有两个角相等,那么这两个角所对的边也相等。(等角对等边)
五、(等边三角形)知识点回顾
1、等边三角形的性质:
等边三角形的三个角都相等,并且每一个角都等于600。
2、等边三角形的判定:
①三个角都相等的三角形是等边三角形。
②有一个角是600的等腰三角形是等边三角形。
3、在直角三角形中,如果一个锐角等于300,那么它所对的直角边等于斜边的一半。
1、等腰三角形的性质
(1)等腰三角形的性质定理及推论:
定理:等腰三角形的两个底角相等(简称:等边对等角)
推论1:等腰三角形顶角平分线平分底边并且垂直于底边。即等腰三角形的顶角平分线、底边上的中线、底边上的高重合。
推论2:等边三角形的各个角都相等,并且每个角都等于60°。
(2)等腰三角形的其他性质:
①等腰直角三角形的两个底角相等且等于45°
②等腰三角形的底角只能为锐角,不能为钝角(或直角),但顶角可为钝角(或直角)。
③等腰三角形的三边关系:设腰长为a,底边长为b,则
④等腰三角形的三角关系:设顶角为顶角为∠A,底角为∠B、∠C,则∠A=180°—2∠B,∠B=∠C=
2、等腰三角形的判定
等腰三角形的判定定理及推论:
定理:如果一个三角形有两个角相等,那么这两个角所对的边也相等(简称:等角对等边)。这个判定定理常用于证明同一个三角形中的边相等。
推论1:三个角都相等的三角形是等边三角形。
推论2:有一个角是60°的等腰三角形是等边三角形。
推论3:在直角三角形中,如果一个锐角等于30°,那么它所对的直角边等于斜边的一半。
等腰三角形的性质与判定
等腰三角形性质
等腰三角形判定
中线
1、等腰三角形底边上的中线垂直底边,平分顶角;
2、等腰三角形两腰上的中线相等,并且它们的交点与底边两端点距离相等。
1、两边上中线相等的三角形是等腰三角形;
2、如果一个三角形的一边中线垂直这条边(平分这个边的对角),那么这个三角形是等腰三角形。
角平分线
1、等腰三角形顶角平分线垂直平分底边;
2、等腰三角形两底角平分线相等,并且它们的交点到底边两端点的距离相等。
1、如果三角形的顶角平分线垂直于这个角的对边(平分对边),那么这个三角形是等腰三角形;
2、三角形中两个角的平分线相等,那么这个三角形是等腰三角形。
高线
1、等腰三角形底边上的高平分顶角、平分底边;
2、等腰三角形两腰上的高相等,并且它们的交点和底边两端点距离相等。
1、如果一个三角形一边上的高平分这条边(平分这条边的对角),那么这个三角形是等腰三角形;
2、有两条高相等的三角形是等腰三角形。
角
等边对等角
等角对等边
边
底的一半<腰长<周长的一半
两边相等的三角形是等腰三角形
4、三角形中的中位线
连接三角形两边中点的线段叫做三角形的中位线。
(1)三角形共有三条中位线,并且它们又重新构成一个新的三角形。
(2)要会区别三角形中线与中位线。
三角形中位线定理:三角形的中位线平行于第三边,并且等于它的一半。
三角形中位线定理的作用:
位置关系:可以证明两条直线平行。
数量关系:可以证明线段的倍分关系。
常用结论:任一个三角形都有三条中位线,由此有:
结论1:三条中位线组成一个三角形,其周长为原三角形周长的一半。
结论2:三条中位线将原三角形分割成四个全等的三角形。
结论3:三条中位线将原三角形划分出三个面积相等的平行四边形。
结论4:三角形一条中线和与它相交的中位线互相平分。
结论5:三角形中任意两条中位线的夹角与这夹角所对的三角形的顶角相等。
第10篇小学六年级数学知识点总结
要想数学学得好,我们就要学会总结学过的知识点。以下是小编精心准备的3年级数学知识点总结,大家可以参考以下内容哦!
第一单元 《位置与方向》
1.相对的方向:南←→北,西←→东;西北←→东南,东北←→西南
2.地图上的方向:上北下南,左西右东。
实际方向:面北背南,左西右东。
3.指南针可以帮助我们辨别方向。
4.看简单路线图的方法:先要确定好自己所处的位置,以自己所处的位置为中心,再根据上北下南,左西右东的规律来确定目的地和周围事物所处的方向,最后根据目的地的方向和路程确定所要行走的路线。
5.描述行走路线的方法:以出发点为基准,再看哪一条路通向目的地,最后把行走路线描述出来(先向哪走,再向哪走),有时还要说明路程有多远。
6.绘制简单示意图:先确定好观察点,把选好的观察点画在平面图中心位置,再确定好各物体相对于观察点的方向。在纸上按“上北下南、左西右东”绘制,用箭头“↑”标出北方。
(描述是要注意是选取哪个物体作参照物的,选取的参照物不同,描述的结果也不一样。)
第二单元《除数是一位数的除法》
(一) 口算除法
1. 整千、整百、整十数除以一位数的口算方法。
(1)用表内除法计算:先用被除数0前面的数除以一位数,算出结果后,再看被除数的末尾有几个0,就在算出的结果后添几个0。
(2)用乘法来算除法:看一位数乘多少等于被除数,乘的数就是所求的商。
2. 三位数除以一位数的估算方法。
(1)除数不变,把三位数看成几百几十或整百的数,再用口算除法的基本方法计算。
(2)想口诀估算:想一位数乘几最接近或等于被除数的最高位或前两位,那么几百或几十就是所要估算的商。
(二) 笔算除法
1. 牢固掌握两位数除以一位数、三位数除以一位数的笔算方法、步骤与格式,尤其是商中间、末尾有0的笔算算式的写法。
(除数是一位数的计算法则,除数是一位数,从被除数的高位除起,先除被除数的前一位,如果不够除,再除被除数的前两位,除到被除数的哪一位,商就写到被除数那一位的上面。除到被除数的哪一位不够商1,用“0”占位。每一次除得的余数必须比除数小。)
2. 会判断商是几位数。
比较除数与被除数最高位的大小,如果被除数最高位上的数比除数小,那么商一定比被除数少一位;如果被除数最高位上的数比除数大或相等,那么商和被除数的位数相等。
3.除法的验算方法:
(1) 没有余数的除法:商×除数=被除数;
(2) 有余数的除法:商×除数+余数=被除数;
4.关于0的一些规定:
(1) 0不能作除数。
(2) 相同的两个数相除商是1。(既然能相除这个数就不是0)
(3) 0除以任何不是0的数都得0;0乘任何数都得0。
5.乘除法的估算:4舍5入法。
如乘法估算:81×68≈5600,就是把81估成80,68估成70,80乘70得5600。
除法估算:493÷8≈60,就是把493估成480(480是8的倍数,也最接进492),然后再口算480÷8得60。
第三单元《统计》
1.会看横向条形统计图及起始格与其他格代表的单位量不一致的条形统计图。能根据统计表中的数据完成统计图,完成的统计图上一定要标数据。
2.能根据统计图表进行分析,解决简单的实际问题(应用题)。能根据统计图、表提出简单的问题,并进行解答。
3.能根据统计图、表中的内容进行简单的数据分析提出合理化的建议。
4.理解平均数的含义,给出一组数据会求它们的平均数。(若干数相加的和,除以这些数的个数,所得的结果叫算术平均数,简称平均数。求平均数分为两步,首先求出若干数的和,再用所求的和除以这些数的个数。)如:3个女生身高:135厘米、140厘米、132厘米,求平均身高。熟记平均数的格式,总数量除以总份数:( + + …… + )÷ 并脱式计算p42。会检查平均数的对错,平均数一定介于最大数与最小数之间。
5.会用平均数来比较两组数据的总体情况。
6.给出平均数和几个数据,求另一个数据。如:小明三科成绩的平均分是85分,其中外语83分,数学80分,求语文多少分。
第四单元《年月日》
(一) 年、月、日部分
1.一年有12个月;一年有4个季度(1、2、3月为第1季度;4、5、6月为第2季度,;7、8、9月为第3季度;10、11、12月为第4季度)。
2.记大小月的方法:1、3、5、7、8、10、腊,31天永不差;4、6、9、冬,30整,只有2月二八九。7个大月,4个小月,二月平年28天,闰年29天。
3.平年全年有365天,平年2月是28天,平年的上半年有181天,下半年有184天。平年全年有52个星期零1天。
4.闰年全年有366天,闰年2月是29天,闰年的上半年有182天,下半年有184天。闰年全年有52个星期零2天。
5.公历年份是4的倍数的一般都是闰年;但公历年份是整百数的,必须是400的倍数才是闰年。如:1900、2100等不是闰年,而1600、2000、2400等是闰年。
6.连续两个月共62天的是:7月和8月,12月和第二年的1月;
一年中连续两个月共62天的是:7月和8月。
7.一个人今年20岁,但只过了5个生日,他是2月29日出生的。
8.计算周年的方法是用现在的年份减去原来的年份得的数就是周年。如:到2008年10月1日,是中国成立(59 )周年。用2008-1949=59周年
(二) 24时计时法部分
1.年月日、时分秒都是时间单位。
2.在一日里,钟表上时针正好走两圈,共24小时。所以,经常采用从0时到24时的计时法, 通常叫做24时计时法。
3.1日(天)=24小时 ;1小时=60分 ;1分=60秒
4.求经过的时间。如:一辆汽车上午8:20出发,到下午5:50到达终点,一共行使多长时间。第一步要先进行换算:把下午5:50变成24时计时法的形式5:50+12=17:50,第二步用17时50分-8时20分=9时30分,就求出了经过的时间。
5.认识时间与时刻的区别。
如:火车11:00出发,21:30到达,火车运行时间是10小时30分,注意不要写成10:30。 正确的列式格式为:21时30分-11时=10时30分,不能用电子表的形式相减。
再如:火车19时出发,第二天8时到达,火车运行时间是13小时。像这种跨越两天的,可以先计算第一天行驶了多长时间:24-19=5(时),再加上第二天行驶的8个小时:5+8=13(时)。
又如:一场球赛,从19时30分开始,进行了155分钟,比赛什么时候结束?先换算,155分=2时35分,再计算。
6.经过的天数的计算:
公式:结束时间—开始时间+1=经过的天数
例如:6月12到6月30日是多少天?(30-12+1=19天)
第五单元《两位数乘两位数》
(一)口算乘法:
1.整十、整百、整千相乘的方法:先用0前边的数相乘,得到一个结果,然后再数一数被乘数和乘数中一共有多少个0,再在结果的后边添上多少0。
2.估算:想被乘数和乘数最接近或等于哪个整十的两位数,那么所要估算的结果就是这两个整十数的乘积。
(二)笔算乘法:注意竖式的格式。
两位数乘两位数在笔算时,首先要相同数位对齐,用下面因数的个位数和十位数依次去乘上面因数的个位数和十位数,将所得的积相加。(遇到进位乘法时,那一位上的乘积满几十就向前一位进几)
1、两位数乘两位数积可能是( 三 )位数,也可能是( 四 )位数。
2、验算:交换两个因数的位置。
第六单元《面积》
1.物体的表面或封闭图形的大小,就是他们的面积。
2.比较两个图形面积的大小,要用统一的面积单位来测量。
3.常用的面积单位有平方厘米(cm2),平方分米(dm2)、平方米(m2)。
4.边长1厘米的正方形面积是1平方厘米。
5.边长1分米的正方形面积是1平方分米。
6.边长1米的正方形面积是1平方米。
7.边长100米的正方形面积是1公顷(10000平方米)。
8.边长1千米(1000米)的正方形面积是1平方千米。
9.测量土地的面积时,常常要用到更大的面积单位:公顷、平方千米。
平方千米 公顷 平方米 平方分米 平方厘米
10.长方形的面积=长×宽 长 = 面积÷宽 宽 = 面积 ÷长
11.正方形的面积=边长×边长
12.长方形的周长=(长+宽)×2 宽 = 周长÷2-长 长 = 周长÷2-宽
13.正方形的周长=边长×4
14.正方形的边长=周长÷4
15.相邻的两个常用的长度单位间的进率是10。
16.相邻的两个常用的面积单位间的进率是100。
17.1平方米=100平方分米 ;1平方分米=100平方厘米 ;
1公顷=10000平方米 ;1平方千米=100公顷(公顷、平方千米这两个土地面积单位间的进率是100。)
注:面积和周长是不能相比较的;分清楚什么时候填长度单位,什么时候填面积单位,填土地面积单位时,比较小的土地面积(如:公园、体育场馆、超市、果园、广场)等一般情况下填公顷;(城市的占地、国家的.面积、江河湖海的面积)等一般情况下填平方千米。
面积相等的两个图形,周长不一定相等。
注 意:
周长相等的两个图形,面积不一定相等。
第七单元《小数的初步认识》
小数的意义
把1个整体平均分成10份、100份、1000份……这样一份或几份可以用分母是10、100、1000的份数来表示,也可以依照整数的写法写在整数个位右面,用圆点隔开来表示十分之几、百分之几、千分之几……的数,叫做小数。
小数的数位
小数点的左边是它的整数部分,小数点的右边是它的小数部分。小数的计数单位是十分之一、百分之一、千分之一……按照一定的顺序排列起来。
1.把1米平均分成10份,每份是1分米;用米作单位是1/10米,也是0.1米。3份就是3分米、3/10米、0.3米。
2.把1米平均分成100份,每份是1厘米;用米作单位是1/100米,也是0.01米。7份就是7厘米、7/100米、0.07米。
注:一位小数的形式实际上是分数十分之几的另外一种表示形式,4/10写成小数就是0.4。
3.小数的基本性质:在一个小数的末尾添上0,小数的大小不变。
如:10.05,在它的末尾添上0,就变成了10.050,10.05=10.050=10.0500=10.05000……大小没有发生变化。
4.比较小数的大小:先看最高位,再看次高位,以此类推。
比较两个小数的大小,先看它们的整数部分,整数部分大的那个小数就大;整数部分相同的,十分位上的数大的那个数就大;十分位相同就比较百分位……
5.小数的加减法:列竖式相加减的时候,要把小数点对齐,然后再进行加减。
计算小数加、减法,先把各数的小数点对齐(也就是把相同数位上的数对齐),再按照整数加、减法的法则进行计算,最后记住在得数中点上小数点。
6.小数不一定比整数小
八.解决问题
在解答应用题时,首先要读准题目,分析题意,找出题目中的数量关系,在选择合适的方法来进行解答。
九.数学广角
在进行等量交换时,首先要正确理解已知条件,掌握已知条件中的数量关系,在进行交换。
第11篇小学六年级数学知识点总结
总结是指对某一阶段的工作、学习或思想中的经验或情况进行分析研究,做出带有规律性结论的书面材料,它可以明确下一步的工作方向,少走弯路,少犯错误,提高工作效益,不如静下心来好好写写总结吧。那么总结应该包括什么内容呢?以下是小编为大家整理的关于八年级数学三角形知识点总结,欢迎阅读与收藏。
1、线段垂直平分线的性质定理及逆定理
垂直于一条线段并且平分这条线段的直线是这条线段的垂直平分线。
线段垂直平分线的性质定理:线段垂直平分线上的点和这条线段两个端点的距离相等。逆定理:和一条线段两个端点距离相等的点,在这条线段的垂直平分线上。
2、角的平分线及其性质
一条射线把一个角分成两个相等的角,这条射线叫做这个角的平分线。角的平分线有下面的性质定理:
(1)角平分线上的点到这个角的两边的距离相等。
(2)到一个角的两边距离相等的点在这个角的平分线上。
垂线的性质:
性质1:过一点有且只有一条直线与已知直线垂直。
性质2:直线外一点与直线上各点连接的'所有线段中,垂线段最短。简称:垂线段最短。2、三角形中的主要线段
(1)三角形的一个角的平分线与这个角的对边相交,这个角的顶点和交点间的线段叫做三角形的角平分线。
(2)在三角形中,连接一个顶点和它对边的中点的线段叫做三角形的中线。
(3)从三角形一个顶点向它的对边做垂线,顶点和垂足之间的线段叫做三角形的高线(简称三角形的高)。
3、三角形的稳定性
三角形的形状是固定的,三角形的这个性质叫做三角形的稳定性。三角形的这个性质在生产生活中应用很广,需要稳定的东西一般都制成三角形的形状。
(1)三角形三边关系定理:三角形的两边之和大于第三边。推论:三角形的两边之差小于第三边。
(2)三角形三边关系定理及推论的作用:
①判断三条已知线段能否组成三角形
②当已知两边时,可确定第三边的范围。
③证明线段不等关系。
三角形的内角和定理:三角形三个内角和等于180°。推论:
①直角三角形的两个锐角互余。
②三角形的一个外角等于和它不相邻的来两个内角的和。③三角形的一个外角大于任何一个和它不相邻的内角。
注:在同一个三角形中:等角对等边;等边对等角;大角对大边;大边对大角。等角的补角相等,等角的余角相等。