二年级数学知识点总结7篇

我要投稿投诉建议
您现在的位置:首页 > 范文 > 班主任相关 > 班主任工作总结

二年级数学知识点总结7篇

2023-07-20 10:22:05

  二年级数学知识点总结7篇

二年级数学知识点总结7篇

第1篇

  一、知识网络结构

  二、知识要点

  1、在同一平面内,两条直线的位置关系有两种:相交和平行,垂直是相交的一种特殊情况。

  2、在同一平面内,不相交的两条直线叫平行线。如果两条直线只有一个公共点,称这两条直线相交;如果两条直线没有公共点,称这两条直线平行。

  3、两条直线相交所构成的四个角中,有公共顶点且有一条公共边的两个角是

  邻补角。邻补角的性质:邻补角互补。如图1所示,与互为邻补角,

  与互为邻补角。 + = 180°; + = 180°; + = 180°;

  + = 180°。

  4、两条直线相交所构成的四个角中,一个角的两边分别是另一个角的两边的反向延长线,这样的两个角互为对顶角。对顶角的性质:对顶角相等。如图1所示,与互为对顶角。 = ;

  5、两条直线相交所成的角中,如果有一个是直角或90°时,称这两条直线互相垂直,

  其中一条叫做另一条的垂线。如图2所示,当= 90°时,⊥ 。

  垂线的性质:

  性质1:过一点有且只有一条直线与已知直线垂直。

  性质2:连接直线外一点与直线上各点的所有线段中,垂线段最短。

  性质3:如图2所示,当a ⊥ b时,= = = = 90°。

  点到直线的距离:直线外一点到这条直线的垂线段的长度叫点到直线的距离。

  6、同位角、内错角、同旁内角基本特征:

  ①在两条直线(被截线)的同一方,都在第三条直线(截线)的同一侧,这样

  的两个角叫同位角。图3中,共有对同位角:与是同位角;

  与是同位角;与是同位角;与是同位角。

  ②在两条直线(被截线)之间,并且在第三条直线(截线)的两侧,这样的两个角叫内错角。图3中,共有对内错角:与是内错角;与是内错角。

  ③在两条直线(被截线)的之间,都在第三条直线(截线)的同一旁,这样的两个角叫同旁内角。图3中,共有对同旁内角:与是同旁内角;与是同旁内角。

  7、平行公理:经过直线外一点有且只有一条直线与已知直线平行。

  平行公理的推论:如果两条直线都与第三条直线平行,那么这两条直线也互相平行。

  平行线的性质:

  性质1:两直线平行,同位角相等。如图4所示,如果a∥b,

  则= ; = ; = ; = 。

  性质2:两直线平行,内错角相等。如图4所示,如果a∥b,则= ; = 。

  性质3:两直线平行,同旁内角互补。如图4所示,如果a∥b,则+ = 180°;

  + = 180°。

  性质4:平行于同一条直线的两条直线互相平行。如果a∥b,a∥c,则∥ 。

  8、平行线的判定:

  判定1:同位角相等,两直线平行。如图5所示,如果=

  或=或=或=,则a∥b。

  判定2:内错角相等,两直线平行。如图5所示,如果=或=,则a∥b 。

  判定3:同旁内角互补,两直线平行。如图5所示,如果+ = 180°;

  + = 180°,则a∥b。

  判定4:平行于同一条直线的两条直线互相平行。如果a∥b,a∥c,则∥ 。

  9、判断一件事情的语句叫命题。命题由题设和结论两部分组成,有真命题和假命题之分。如果题设成立,那么结论一定成立,这样的命题叫真命题;如果题设成立,那么结论不一定成立,这样的命题叫假命题。真命题的正确性是经过推理证实的,这样的真命题叫定理,它可以作为继续推理的依据。

  10、平移:在平面内,将一个图形沿某个方向移动一定的距离,图形的这种移动叫做平移变换,简称平移。

  平移后,新图形与原图形的形状和大小完全相同。平移后得到的新图形中每一点,都是由原图形中的某一点移动后得到的,这样的两个点叫做对应点。

  平移性质:平移前后两个图形中①对应点的连线平行且相等;②对应线段相等;③对应角相等。

  第六章实数

  【知识点一】实数的分类

  1、按定义分类:2.按性质符号分类:

  注:0既不是正数也不是负数.

  【知识点二】实数的相关概念

  1.相反数

  (1)代数意义:只有符号不同的两个数,我们说其中一个是另一个的相反数.0的相反数是0.

  (2)几何意义:在数轴上原点的两侧,与原点距离相等的两个点表示的两个数互为相反数,或数轴上,互为相反数的两个数所对应的点关于原点对称.

  (3)互为相反数的两个数之和等于0.a、b互为相反数a+b=0.

  2.绝对值|a|≥0.

  3.倒数(1)0没有倒数(2)乘积是1的两个数互为倒数.a、b互为倒数.

  4.平方根

  (1)如果一个数的平方等于a,这个数就叫做a的平方根.一个正数有两个平方根,它们互为相反数;0有一个平方根,它是0本身;负数没有平方根.a(a≥0)的平方根记作.

  (2)一个正数a的正的平方根,叫做a的算术平方根.a(a≥0)的算术平方根记作.

  5.立方根

  如果x3=a,那么x叫做a的立方根.一个正数有一个正的立方根;一个负数有一个负的立方根;零的立方根是零.

  【知识点三】实数与数轴

  数轴定义:规定了原点,正方向和单位长度的直线叫做数轴,数轴的三要素缺一不可.

  【知识点四】实数大小的比较

  1.对于数轴上的任意两个点,靠右边的点所表示的数较大.

  2.正数都大于0,负数都小于0,两个正数,绝对值较大的那个正数大;两个负数;绝对值大的反而小.

  3.无理数的比较大小:

  【知识点五】实数的运算

  1.加法

  同号两数相加,取相同的符号,并把绝对值相加;绝对值不相等的异号两数相加,取绝对值较大的加数的符号,并用较大的绝对值减去较小的绝对值;互为相反数的两个数相加得0;一个数同0相加,仍得这个数.

  2.减法:减去一个数等于加上这个数的相反数.

  3.乘法

  几个非零实数相乘,积的符号由负因数的个数决定,当负因数有偶数个时,积为正;当负因数有奇数个时,积为负.几个数相乘,有一个因数为0,积就为0.

  4.除法

  除以一个数,等于乘上这个数的倒数.两个数相除,同号得正,异号得负,并把绝对值相除.0除以任何一个不等于0的数都得0.

  5.乘方与开方

  (1)an所表示的意义是n个a相乘,正数的任何次幂是正数,负数的偶次幂是正数,负数的奇次幂是负数.

  (2)正数和0可以开平方,负数不能开平方;正数、负数和0都可以开立方.

  (3)零指数与负指数

  【知识点六】有效数字和科学记数法

  1.有效数字:

  一个近似数,从左边第一个不是0的数字起,到精确到的数位为止,所有的数字,都叫做这个近似数的有效数字.

  2.科学记数法:

  把一个数用(1≤<10,n为整数)的形式记数的方法叫科学记数法.

  第七章平面直角坐标系

  一、知识网络结构

  二、知识要点

  1、有序数对:有顺序的两个数a与b组成的数对叫做有序数对,记做(a,b) 。

  2、平面直角坐标系:在平面内,两条互相垂直且有公共原点的数轴组成平面直角坐标系。

  3、横轴、纵轴、原点:水平的数轴称为x轴或横轴;竖直的数轴称为y轴或纵轴;两坐标轴的交点为平面直角坐标系的原点。

  4、坐标:对于平面内任一点P,过P分别向x轴,y轴作垂线,垂足分别在x轴,y轴上,对应的数a,b分别叫点P的横坐标和纵坐标,记作P(a,b)。

  5、象限:两条坐标轴把平面分成四个部分,右上部分叫第一象限,按逆时针方向依次叫第二象限、第三象限、第四象限。坐标轴上的点不在任何一个象限内。

  6、各象限点的坐标特点①第一象限的点:横坐标0,纵坐标0;②第二象限的点:横坐标0,纵坐标0;③第三象限的点:横坐标0,纵坐标0;④第四象限的点:横坐标0,纵坐标0。

  7、坐标轴上点的坐标特点①x轴正半轴上的点:横坐标0,纵坐标0;②x轴负半轴上的点:横坐标0,纵坐标0;③y轴正半轴上的点:横坐标0,纵坐标0;④y轴负半轴上的点:横坐

  标0,纵坐标0;⑤坐标原点:横坐标0,纵坐标0。(填“>”、“

  8、点P(a,b)到x轴的距离是|b|,到y轴的距离是|a| 。

  9、对称点的坐标特点①关于x轴对称的两个点,横坐标相等,纵坐标互为相反数;②关于y轴对称的两个点,纵坐标相等,横坐标互为相反数;③关于原点对称的两个点,横坐标、纵坐标分别互为相反数。

  10、点P(2,3)到x轴的距离是;到y轴的距离是;点P(2,3)关于x轴对称的点坐标为(,);点P(2,3)关于y轴对称的点坐标为(,)。

  11、如果两个点的横坐标相同,则过这两点的直线与y轴平行、与x轴垂直;如果两点的纵坐标相同,则过这两点的直线与x轴平行、与y轴垂直。如果点P(2,3)、Q(2,6),这两点横坐标相同,则PQ∥y轴,PQ⊥x轴;如果点P(-1,2)、Q(4,2),这两点纵坐标相同,则PQ∥x轴,PQ⊥y轴。

  12、平行于x轴的直线上的点的纵坐标相同;平行于y轴的直线上的点的横坐标相同;在一、三象限角平分线上的点的横坐标与纵坐标相同;在二、四象限角平分线上的点的横坐标与纵坐标互为相反数。如果点P(a,b)在一、三象限角平分线上,则P点的横坐标与纵坐标相同,即a = b ;如果点P(a,b)在二、四象限角平分线上,则P点的横坐标与纵坐标互为相反数,即a = -b 。

  13、表示一个点(或物体)的位置的方法:一是准确恰当地建立平面直角坐标系;二是正确写出物体或某地所在的点的坐标。选择的坐标原点不同,建立的平面直角坐标系也不同,得到的同一个点的坐标也不同。

  14、图形的平移可以转化为点的平移。坐标平移规律:①左右平移时,横坐标进行加减,纵坐标不变;②上下平移时,横坐标不变,纵坐标进行加减;③坐标进行加减时,按“左减右加、上加下减”的规律进行。如将点P(2,3)向左平移2个单位后得到的点的坐标为(,);将点P(2,3)向右平移2个单位后得到的点的坐标为(,);将点P(2,3)向上平移2个单位后得到的点的坐标为(,);将点P(2,3)向下平移2个单位后得到的点的坐标为(,);将点P(2,3)先向左平移3个单位后再向上平移5个单位后得到的点的坐标为(,);将点P(2,3)先向左平移3个单位后再向下平移5个单位后得到的点的坐标为(,);将点P(2,3)先向右平移3个单位后再向上平移5个单位后得到的点的坐标为(,);将点P(2,3)先向右平移3个单位后再向下平移5个单位后得到的点的坐标为(,)。

  第八章二元一次方程组

  一、知识网络结构

  二、知识要点

  1、含有未知数的等式叫方程,使方程左右两边的值相等的未知数的值叫方程的解。

  2、方程含有两个未知数,并且含有未知数的项的次数都是1,这样的方程叫二元一次方程,二元一次方程的一般形式为(为常数,并且)。使二元一次方程的左右两边的值相等的未知数的值叫二元一次方程的解,一个二元一次方程一般有无数组解。

  3、方程组含有两个未知数,并且含有未知数的项的次数都是1,这样的方程组叫二元一次方程组。使二元一次方程组每个方程的左右两边的值相等的未知数的值叫二元一次方程组的解,一个二元一次方程组一般有一个解。

  4、用代入法解二元一次方程组的一般步骤:观察方程组中,是否有用含一个未知数的式子表示另一个未知数,如果有,则将它直接代入另一个方程中;如果没有,则将其中一个方程变形,用含一个未知数的式子表示另一个未知数;再将表示出的未知数代入另一个方程中,从而消去一个未知数,求出另一个未知数的值,将求得的未知数的值代入原方程组中的任何一个方程,求出另外一个未知数的值。

  5、用加减法解二元一次方程组的一般步骤:(1)方程组的两个方程中,如果同一个未知数的系数既不相等又不互为相反数,就用适当的数去乘方程的两边,使同一个未知数的系数相等或互为相反数;(2)把两个方程的两边分别相加或相减,消去一个未知数;(3)解这个一元一次方程,求出一个未知数的值;(4)将求出的未知数的值代入原方程组中的任何一个方程,求出另外一个未知数的值,从而得到原方程组的解。

  6、解三元一次方程组的一般步骤:①观察方程组中未知数的系数特点,确定先消去哪个未知数;②利用代入法或加减法,把方程组中的一个方程,与另外两个方程分别组成两组,消去同一个未知数,得到一个关于另外两个未知数的二元一次方程组;③解这个二元一次方程组,求得两个未知数的值;④将这两个未知数的值代入原方程组中较简单的一个方程中,求出第三个未知数的值,从而得到原三元一次方程组的解。

  第九章不等式与不等式组

  一、知识网络结构

  二、知识要点

  1、用不等号表示不等关系的式子叫不等式,不等号主要包括:> 、 < 、 ≥ 、 ≤ 、 ≠ 。

  2、在含有未知数的不等式中,使不等式成立的未知数的值叫不等式的解,一个含有未知数的不等式的所有的解组成的集合,叫这个不等式的解集。不等式的解集可以在数轴上表示出来。求不等式的解集的过程叫解不等式。含有一个未知数,并且所含未知数的项的次数都是1,这样的不等式叫一元一次不等式。

  3、不等式的性质:

  ①性质1:不等式的两边同时加上(或减去)同一个数(或式子),不等号的方向不变。

  用字母表示为:如果,那么;如果,那么;

  如果,那么;如果,那么。

  ②性质2:不等式的两边同时乘以(或除以)同一个正数,不等号的方向不变。

  用字母表示为:如果,那么(或);如果,那么(或);

  如果,那么(或);如果,那么(或);

  ③性质3:不等式的两边同时乘以(或除以)同一个负数,不等号的方向改变。

  用字母表示为:如果,那么(或);如果,那么(或);

  如果,那么(或);如果,那么(或);

  4、解一元一次不等式的一般步骤:①去分母;②去括号;③移项;④合并同类项; ⑤系数化为1 。这与解一元一次方程类似,在解时要根据一元一次不等式的具体情况灵活选择步骤。

  5、不等式组中含有一个未知数,并且所含未知数的项的次数都是1,这样的不等式组叫一元一次不等式组。使不等式组中的每个不等式都成立的未知数的值叫不等式组的解,一个不等式组的所有的解组成的集合,叫这个不等式组的解集解(简称不等式组的解)。不等式组的解集可以在数轴上表示出来。求不等式组的解集的过程叫解不等式组。

  6、解一元一次不等式组的一般步骤:①求出这个不等式组中各个不等式的解集;②利用数轴求出这些不等式的解集的公共部分,得到这个不等式组的解集。如果这些不等式的解集的没有公共部分,则这个不等式组无解(此时也称这个不等式组的解集为空集)。

  7、求出各个不等式的解集后,确定不等式组的解的口诀:大大取大,小小取小,大小小大取中间,大大小小无处找。

  第十章数据的收集、整理与描述

  知识要点

  1、对数据进行处理的一般过程:收集数据、整理数据、描述数据、分析得出结论。

  2、数据收集过程中,调查的方法通常有两种:全面调查和抽样调查。

  3、除了文字叙述、列表、划记法外,还可以用条形图、折线图、扇形图、直方图来描述数据。

  4、抽样调查简称抽查,它只抽取一部分对象进行调查,根据调查数据推断全体对象的情况。要考察的全体对象叫总体,组成总体的每一个考察对象叫个体,被抽取的那部分个体组成总体的一个样本,样本中个体的数目叫这个样本的容量。

  5、画频数直方图的步骤:①计算数差(值与最小值的差);②确定组距和组数;③列频数分布表;④画频数直方图。

第2篇

  总结是指对某一阶段的工作、学习或思想中的经验或情况加以总结和概括的书面材料,它能使我们及时找出错误并改正,我想我们需要写一份总结了吧。那么我们该怎么去写总结呢?以下是小编为大家整理的六年级下册数学第二单元重点知识点总结,仅供参考,大家一起来看看吧。

  1、认识圆柱和圆锥,掌握它们的基本特征。认识圆柱的底面、侧面和高。认识圆锥的底面和高。

  2、探索并掌握圆柱的侧面积、表面积的计算方法,以及圆柱、圆锥体积的计算公式,会运用公式计算体积,解决有关的简单实际问题。

  3、通过观察、设计和制作圆柱、圆锥模型等活动,了解平面图形与立体图形之间的联系,发展学生的空间观念。

  4、圆柱的两个圆面叫做底面,周围的'面叫做侧面,底面是平面,侧面是曲面,。

  5、圆柱的侧面沿高展开后是长方形,长方形的长等于圆柱底面的周长,长方形的宽等于圆柱的高,当底面周长和高相等时,侧面沿高展开后是一个正方形。

  6、圆柱的表面积=圆柱的侧面积+底面积×2即S表=S侧+S底×2或2πr×h + 2×πr2

  7、圆柱的侧面积=底面周长×高即S侧=Ch或2πr×h

  8、圆柱的体积=圆柱的底面积×高,即V=sh或πr2×h

  (进一法:实际中,使用的材料都要比计算的结果多一些,因此,要保留数的时候,省略的位上的是4或者比4小,都要向前一位进1。这种取近似值的方法叫做进一法。)

  9、圆锥只有一个底面,底面是个圆。圆锥的侧面是个曲面。

  10、从圆锥的顶点到底面圆心的距离是圆锥的高。圆锥只有一条高。(测量圆锥的高:先把圆锥的底面放平,用一块平板水平地放在圆锥的顶点上面,竖直地量出平板和底面之间的距离。)

  11、把圆锥的侧面展开得到一个扇形。

  12、圆锥的体积等于与它等底等高的圆柱体积的三分之一,即V锥=1/3 Sh或πr2×h÷3

  13、常见的圆柱圆锥解决问题:①、压路机压过路面面积(求侧面积);②、压路机压过路面长度(求底面周长);③、水桶铁皮(求侧面积和一个底面积);④、厨师帽(求侧面积和一个底面积);通风管(求侧面积)。

第3篇

  1、代数式:用运算符号“+ — × ÷ …… ”连接数及表示数的字母的式子称为代数式、注意:用字母表示数有一定的限制,首先字母所取得数应保证它所在的式子有意义,其次字母所取得数还应使实际生活或生产有意义;单独一个数或一个字母也是代数式、

  2、列代数式的几个注意事项:

  (1)数与字母相乘,或字母与字母相乘通常使用“· ”乘,或省略不写;

  (2)数与数相乘,仍应使用“×”乘,不用“· ”乘,也不能省略乘号;

  (3)数与字母相乘时,一般在结果中把数写在字母前面,如a×5应写成5a;

  (4)带分数与字母相乘时,要把带分数改成假分数形式,如a×应写成a;

  (5)在代数式中出现除法运算时,一般用分数线将被除式和除式联系,如3÷a写成的形式;

  (6)a与b的差写作a—b,要注意字母顺序;若只说两数的差,当分别设两数为a、b时,则应分类,写做a—b和b—a 、

  3、几个重要的代数式:(m、n表示整数)

  (1)a与b的平方差是:a2—b2;a与b差的平方是:(a—b)2;

  (2)若a、b、c是正整数,则两位整数是:10a+b,则三位整数是:100a+10b+c;

  (3)若m、n是整数,则被5除商m余n的数是:5m+n;偶数是:2n,奇数是:2n+1;三个连续整数是:n—1、n、n+1;

  (4)若b>0,则正数是:a2+b,负数是:—a2—b,非负数是:a2,非正数是:—a2 、

第4篇

  在年少学习的日子里,大家都没少背知识点吧?知识点就是学习的重点。想要一份整理好的知识点吗?以下是小编为大家收集的数学四年级第三章重点知识点总结,欢迎大家分享。

  分数大小比较

  1、会比较同分母分数或同分子分数的大小。

  2、解决相关的简单的实际问题。

  3、认识不同的分数可以表示相同的量。

  4、认识等值分数;会找到相等的分数。

  分数的'加减计算

  1、理解算理,会计算分母在20以内的同分母分数加减法的计算方法。

  2、能正确计算20以内的同分母分数加减法。

  3、通过观察分数墙,会发现分数的有关知识,初步学习“观察、发现、转化”等数学思想方法。

  分数知识点

  1、知道数射线上任何一个点都可以用一个数来表示。实现“分数”概念从“过程”到“对象”的转变。

  2、会在数射线上比较分数的大小。并能直接进行相同分母或者相同分子分数的大小比较。

  3、掌握相同分母分数的加减法计算。

  q在数学中代表什么

  数学中Q表示有理数集,但Q并不表示有理数,有理数集与有理数是两个不同的概念。有理数集是元素为全体有理数的集合,而有理数则为有理数集中的所有元素。

  有理数的认识

  有理数为整数(正整数、0、负整数)和分数的统称。正整数和正分数合称为正有理数,负整数和负分数合称为负有理数。因而有理数集的数可分为正有理数、负有理数和零。由于任何一个整数或分数都可以化为十进制循环小数,反之,每一个十进制循环小数也能化为整数或分数,因此,有理数也可以定义为十进制循环小数。

  有理数集是整数集的扩张。在有理数集内,加法、减法、乘法、除法(除数不为零)4种运算通行无阻。

  有理数a,b的大小顺序的规定:如果a-b是正有理数,则称当a大于b或b小于a,记作a>b或b

  有理数集与整数集的一个重要区别是,有理数集是稠密的,而整数集是密集的。将有理数依大小顺序排定后,任何两个有理数之间必定还存在其他的有理数,这就是稠密性。整数集没有这一特性,两个相邻的整数之间就没有其他的整数了。

  有理数是实数的紧密子集:每个实数都有任意接近的有理数。一个相关的性质是,仅有理数可化为有限连分数。依照它们的序列,有理数具有一个序拓扑。有理数是实数的(稠密)子集,因此它同时具有一个子空间拓扑。

  学好数学的思维

  转化思维

  转化思维,既是一种方法,也是一种思维。转化思维,是指在解决问题的过程中遇到障碍时,通过改变问题的方向,从不同的角度,把问题由一种形式转换成另一种形式,寻求最佳方法,使问题变得更简单、清晰。

  逻辑思维

  逻辑是一切思考的基础。逻辑思维是人们在认识过程中借助于概念、判断、推理等思维形式对事物进行观察、比较、分析、综合、抽象、概括、判断、推理的思维过程。逻辑思维,在解决逻辑推理问题时使用广泛。

  逆向思维

  逆向思维也叫求异思维,它是对司空见惯的似乎已成定论的事物或观点反过来思考的一种思维方式。敢于“反其道而思之”,让思维向对立面的方向发展,从问题的相反面深入地进行探索,树立新思想,创立新形象。

第5篇

  本单元与第二单元考察内容大同小异。

  第五单元混合运算

  一、混合计算

  混合运算,先乘除,后加减,有括号的要先算括号里面的。

  只有加、减法或只有乘、除法,都要从左到右按顺序计算。

  二、解决两步计算的实际问题

  1、想好先解决什么问题,再解决什么问题。

  2、可以画图帮助分析。

  3、可以分步计算,也可以列综合算式。

  4、带小括号运算的类型:

  方法:算式里有括号的,要先算括号里面的。

  5.把两个算式合并成一个综合算式。(重点)。

  弄清楚哪个数是前一步算式的结果,就用前一步算式替换掉那个数,其他的照写。

  当需要替换的是第二个数,必要时还需要加上小括号。

  第六单元有余数的除法

  有余数的除法

  1、有余数的除法的意义:在平均分一些物体时,有时会有剩余。

  2、余数与除数的关系:在有余数的除法中,余数必须比除数小。

  最大的余数小于除数1,最小的余数是1。

  3、笔算除法的计算方法:

  (1)先写除号“厂”

  (2)被除数写在除号里,除数写在除号的左侧。

  (3)试商,商写在被除数上面,并要对着被除数的个位。

  (4)把商与除数的乘积写在被除数的下面,相同数位要对齐。

  (5)用被除数减去商与除数的乘积,如果没有剩余,就表示能除尽。

  4、有余数的除法的计算方法可以分四步进行:一商,二乘,三减,四比。

  (1)商:即试商,想除数和几相乘最接近被除数且小于被除数,那么商就是几,写在被除数的个位的上面。

  (2)乘:把除数和商相乘,将得数写在被除数下面。

  (3)减:用被除数减去商与除数的乘积,所得的差写在横线的下面。

  (4)比:将余数与除数比一比,余数必须必除数小。

  5、解决问题

  根据除法的意义,解决简单的有余数的除法的问题,要根据实际情况,灵活处理余数。

  (1)余数比除数小。

  (2)至少问题(进一法):商+1

  22个学生去划船,每条船最多坐4人,他们至少要租多少条船?

  22÷4=5(条)……2(人)

  答:他们至少要租6条船。

  (3)最多问题(去尾法)

  茵苗有10元,每个面包3元,茵苗最多能买几个?

  本单元有一道难题,就是已知几月几日是星期几,要求几月几日是星期几。这一部分难度比较大,家长们可以先自行观看教学视频,自己先弄明白了,再给孩子讲解。

  第七单元万以内数的认识

  一、1000以内数的认识

  1、10个一百就是一千。

  2、读数时,要从高位读起。百位上是几就几百,十位上几就几十,个位上是几就读几中间有一个0,就读“零”,末尾不管有几个0,都不读。

  3、写数时,要从高位写起,几个百就在百位写几,几个十就在十位写几,几个一就在个位写几,哪一位上一个数也没有就写0占位。

  4、数的组成:看每个数位上是几,就由几个这样的计数单位组成。

  5、认识算盘,一颗上珠是5,一颗下珠是1。

  二、10000以内数的认识

  1、10个一千是一万。

  2、万以内数的读法和写法与1000以内的数读法和写法相同。

  3、最小两位数是10,最大的两位数是99;

  最小三位数是100,最大的三位数是999;

  最小四位数是1000,最大的四位数是9999;

  最小的五位数是10000,最大的五位数是99999。

  三、整百、整千数加减法

  1、整百、整千加减法的计算方法。

  (1)把整百、整千数看成几个百,几个千,然后相加减。

  (2)先把0前面的数相加减,再在得数末尾添上与整百、整千数相同个数的0。

  2、估算

  把数看做它的近似数再计算。

  四、10000以内数的大小比较的方法:

  (1)位数多的数就大,例如999<1000

  (2)如果位数相同,就比较最高位上的数字,数字大的这个数就大,反之就小;

  (3)如果最高位上的数字相同,就比较下一位上的数,依次类推。

  第八单元克、千克

  1.(千克)和(克)都是国际上通用的质量单位。计量比较重的物品,常用“千克”(kg)作单位。

  2、称较轻的物品的质量时,用“克”作单位;称较重的物品的质量时,用“千克”作单位。

  3、一个两分的硬币约是1克。两袋500克的盐约是1千克。

  4、1千克=1000克1kg=1000g.进率是1000。

  5、计算或者比较大小时,如果单位不同,就需要把单位统一,一般统一成单位“克”。

  估计物品有多重,要结合物品的大小、质地等因素。

  物品的重量和物品的材质没有关系:1千克的棉花和1千克的铁一样重。

  第九单元数学广角-推理

  1、有语文、数学和品德与生活三本书,小红、小丽和小刚各拿一本。

  推理时,先根据条件确定必然情况,再用排除法确定其他情况。

  2、填数游戏和扫雷游戏

  当然,这么多的内容,当然不是让孩子一下子就记住。寒假期间,孩子要先把乘法口诀背熟,能够根据乘法口诀写出四道算式或两道算式。

  此外,还可以做一些加减混合、乘加、乘减的应用题。

  小学二年级下册数学必背内容

  (一)有余数的除法

  ①商要对着被除数的个位。②余数要比除数小。

  被除数÷除数=商…….余数

  被除数=除数×商+余数

  1、()÷()=5……6,除数最小是(),被除数最小是()。

  2、在应用题中,余数单位和被除数单位相同。

  (二)万以内数的认识

  1、数位顺序表按(从右往左)的顺序,依次是(个位)、(十位)、(百位)、(千位)、(万位)。

  2、10个一是十,10个十是一百,10个一百是一千,10个一千是一万。

  3、计数单位有:一、十、百、千、万,相邻两个计数单位间的进率是10.

  4、最小的一位数是1,最大的一位数是9;最小的两位数是10,最大的两位数是99;最小的三位数是100,最大的三位数是999;最小的四位数是1000,最大的四位数是9999;最大的五位数是10000.

  5、读数、写数都从高位起。

  (三)长度单位

  1、1千米=(1000)米

  1米=(10)分米,1分米=(10)厘米,1厘米=(10)毫米,

  1米=(100)厘米,1分米=(100)毫米。

  2、长度单位转换时,大单位转小单位,数字增大(添“0”),小单位转大单位,数字减小(去“0”)。

  3、手臂打开大约1米;(1拃)长大约10厘米,也是1分米;

  (2分硬币)大约有1毫米厚;10张纸的厚度大约1毫米。

  4、在表示较远距离时,用(千米)作单位,如(各类交通工具的时速),(马拉松长跑的路程),(铁路长),(两个城市间的路程)等。

  5、用米作单位常见的有描述(树高)、(楼高)、(桥长)等。

  (四)三位数的加法和减法

  1、求“和”用加法;求“差”用减法;求“积”用乘法;求“商”用除法。

  2、加数=和-另一个加数

  被减数—减数=差

  被减数=减数+差

  减数=被减数-差

  3、笔算三位数加减法时,从(个位)算起,相加满十向(前一)位进1。相减,不够减向(前一)位借1,借1作10。

  (五)图形

  1、长方形:4条边,(对边)相等,4个角都是(直角)。较长的边叫长(2条长),较短的.边叫宽(2条宽)。

  2、正方形:(四条边)都相等,4个角都是(直角)。

  3、平行四边形:有4条边,(对边)相等;有4个角,(对角)相等;有2个钝角和2个锐角,还具有不稳定性。

  (六)时间单位

  1、钟面上有(12)个大格,(60)个小格。

  时针走(1大格)是(1时);

  分针走(1小格)是(1分),走一大格是(5分)。

  秒针走(1小格)是1秒,走一大格是(5秒)。

  2、时针走(1大格)是(1时),这时分针正好走(1圈),是(60)分,所以1时=(60)分。

  3、分针走(1小格)是(1分),这时秒针正好走(1圈),是(60)秒。所以1分=(60)秒。

  4、结束时间-开始时间=经过时间

  结束时间-经过时间=开始时间

  开始时间+经过时间=结束时间

  5、在求时间时,可以列竖式计算。

  减法时:要先算(分减分),再算(时减时),当“分”不够减时,向(时)借1当60分,60分与原来的“分”合在一起再减。

  加法时:先算(分加分),再算(时加时),当分加分超过60分时,要把其中的60分转化为1时。

  7时10分-3是50分=()2时40分+3时50分=()

  6、通常下午的时间转化成24时计时法,例如

  下午3时20分就是(15时20分)

  7、描述50米、100米跑步的时间要用(秒)作单位。

  8、时针从数字3走到数字8经过时间是()。

  分针从数字3走到数字8经过时间是()。

  秒针从数字3走到数字8经过时间是()。

第6篇

  1.学会用“正”字记录数据。

  2.会数“正”,知道一个“正”字代表数量5。

  3.根据统计表,会解决问题。

  4.数据收集---整理---分析表格。

  在绘制表格或者图形的时候,要注意每个小格代表的数量是多少。

第7篇

  总结就是把一个时段的学习、工作或其完成情况进行一次全面系统的总结,它可以帮助我们有寻找学习和工作中的规律,因此十分有必须要写一份总结哦。总结怎么写才不会流于形式呢?以下是小编帮大家整理的三年级下册数学知识点总结,欢迎阅读,希望大家能够喜欢。

  (一)年、月、日

  1、常用的时间单位有:(年、月、日)和(时、分、秒)。

  2、重要的日子:1949年10月1日,中华人民共和国成立。

  1月1日元旦节、3月12日植树节,5月1日劳动节,6月1日儿童节,7月1日建党节,8月1日建军节,9月10日教师节,10月1日国庆节

  3、熟记每个月的天数:知道大月一个月有31天,小月一个月有30天。平年二月28天,闰年二月29天,二月既不是大月也不是小月。一年有12个月(7大4小1特殊)

  可借助歌谣记忆:

  一、三、五、七、八、十、腊(即十二月),

  三十一天永不差。

  四六九冬三十天,只有二月二十八。

  每逢四年闰一日,一定要在二月加。

  4、熟记全年天数:平年2月28天,闰年2月29天。平年365天,闰年366天。上半年多少天(平年181天,闰年182天),下半年多少天(所有年份都是184天)。

  (1)季度:(一年分四季度,每3个月为一个季度)

  一、二、三月是 第一季度(平年有90天,闰年有91天),

  四、五、六月是 第二季度(有91天),

  七、八、九月是 第三季度(92天),

  十、十一、十二月是 第四季度(有92天)。

  (2)会计算每个季度有多少天,连续几个月共有多少天。连续两个月共62天的是:7月和8月,12月和第二年的1月;一年中连续两个月共62天的是:7月和8月。

  (3)给出一个天数会计算有几个星期零几天。

  如:第三季度有(92)天,有(13 )个星期零( 1)天。平年全年有(365)天,是(52 )个星期零(1)天。

  (4)公历年份是4的倍数的一般都是闰年:一般情况下可以用年份除以4的方法判断平年闰年。年份除以4有余数是平年,没有余数是闰年。

  如:1978÷4=494……2,1978年是平年。

  1988÷4=497,1988年是闰年。

  (5)公历年份是整百数的必须是400的倍数才是闰年。

  如1900年是平年,20xx年是闰年。

  5、经过的天数的计算:

  公式:结束时间—开始时间 + 1

  例如:6月12到8月17日是多少天?

  6月12日~~6月30日 30-12+1=9(天)

  7月有:31(天) 8月1日~~8月17日 有:17(天)

  9+31+17=57(天)

  6、给出一个人出生的年份,会计算这个人多少周岁;给出一个人的年龄会计算他是哪一年出生的。

  如:小华1994年6月出生,到今年6月(15岁)。小华今年12岁,他是(1997年)出生的`。

  7、通常每4年里有( 1 )个闰年, ( 3 )个平年。

  (如果说某个人不是每年都能过到生日,8岁过两次生日,12岁过3次生日,那么他的生日就是2月29日。)

  8、推算星期几的方法:

  例如:已知今天星期三,再过50天星期几?

  解析:因为一个星期是七天,那么由50÷7=7(星期)……1(天),知道50天里有7个星期多一天,所以第50天是星期三往后数一天,即星期四。

  9、会计算到今年经过的年份:就用20xx - 给的年份

  例如:中华人民共和国成立于1949年10月1日,到今年建国多少周年?

  熟记中华人民共和国建国的时间是1949年10月1日;

  算式:20xx-1949=64(年)

  (二) 24计时法

  1、普通计时法又叫12时计时法,就是把一天分成两个12时表示,普通计时法一定要加上“上午”、“下午”等前缀。(如凌晨3时、早上8时、上午10时、下午2时、晚上8时)

  2、24时计时法:就是把一天分成24时表示,在表示的时间前可以加或可以不加表示的大概时间段得词语。

  3、普通计时法转换成24时计时法时,超过下午1时的时刻用24时计时法表示就是把原来的时刻加上12。

  如:

  普通计时法 24时计时法

  上午9时 === 9时或9:00

  晚上9时 === 21时或21:00

  4、反过来要把24时计时法表示的时刻表示成普通计时法的时刻,超过13时的时刻就减12,并加上下午,晚上等字在时刻前面。

  比如:16时等于16 - 12 = 下午4时。(必须加前缀)

  5、计算经过时间,就是用结束时刻减开始时刻。

  结束时刻-开始时刻=时间段(经过时间)

  比如:10:00开始营业,22:00结束营业,

  营业时间为:22:00—10:00=12(小时)

  ★(计算经过时间时,一定把不同的计时法变成相同的计时法再计算)

  比如:某商品早上8:00开始营业,下午6:00停止营业,一天营业多少时间?

  下午6:00=18:00 18:00 - 8:00 = 10(小时)

  6、认识时间与时刻的区别:(时间是一段,时刻是一个点)

  如:火车11:00出发,21时30分到达,火车运行时间是(10时30分),注意不要写成(10:30)。

  正确的列式格式为:21时30分-11时=10时30分,不能用电子表的形式相减。

  再如:火车19时出发,第二天8时到达,火车运行时间是(13小时)。像这种跨越两天的,可以先计算第一天行驶了多长时间:24-19=5(时),再加上第二天行驶的8个小时:5+8=13(时)

  又如:一场球赛,从19时30分开始,进行了155分钟,比赛什么时候结束?先换算,155分=2时35分,再计算。

  7、会根据给出的信息制作月历和年历。如:某年8月1日是星期二,制作8月份的月历。再如:某年4月30日是星期

  四,制作5月份月历。

  制作年历步骤:

  第一:确定1月1日是星期几;

  第二:确定12个月怎样排列,

  第三:把休息日用另外的颜色标出来。

  8、时间单位进率:

  1世纪=100年

  1年 =12个月

  1天(日)=24小时

  1小时=60分钟

  1分钟=60秒钟

  1周=7天

  三年级下册数学知识

  第一单元位置与方向

  1、①(东与西)相对,(南与北)相对,

  (东南—西北)相对,(西南—东北)相对。

  ②清楚以谁为标准来判断位置。

  ③理解位置是相对的,不是绝对的。

  2、地图通常是按(上北、下南、左西、右东)来绘制的。

  (做题时先标出北南西东。)

  3、会看简单的路线图,会描述行走路线。

  一定写清楚从哪儿向哪个方向走,走了多少米,到哪儿再向哪个方向走。同一个地点可以有不同的描述位置的方式。(例如:学校在剧场的西面,在图书馆的东面,在书店的南面,在邮局的北面。)同一个地点有不同的行走路线。一般找比较近的路线走。

  4.、指南针是用来指示方向的,它的一个指针永远指向(南方),另一端永远指向(北方)。

  5.、生活中的方位知识:

  ①北斗星永远在北方。

  ②影子与太阳的方向相对。

  ③早上太阳在东方,中午在南方,傍晚在西方。

  ④风向与物体倾斜的方向相反。

  (刮风时的树朝风向相对的方向弯,烟朝风向相对的方向飘……)

  三下数学期中复习知识

  小数的初步认识

  1、小数的意义:像3.45,0.85,2.60,36.6,1.2和1.5这样的数叫做小数。小数是分数的另一种表现形式。

  2、小数的认、读、写:限于小数部分不超过两位的小数。整数部分按整数的读法(几百几十几)。小数部分每一位都要读,按读电话号码的方法读,有几个0就读几个零。

  例如:127.005读作:一百二十七点零零五。

  3、小数与分数的关系、互换。小数不同表示的分数就不同。

  例如:0.5=5/10 0.50=50/100

  4、运用元/角/分、米/分米/厘米的知识写小数;把7角、7分改写成以元作单位的小数。

  5、把“单位1”平均分成10份,每份是它的十分之一,也就是0.1

  把“单位1”平均分成100份,每份是它的百分之一,也就是0.01

  6、分母是10的分数写成一位小数(0.1),

  分母是100的分数写成两位小数(0.01)。

  7、比较两个小数的大小:先比较小数的整数部分,整数部分大的数就大,如果整数部分相同就比较小数的小数部分,小数部分要从小数点后最高位比起。

  8、比大小的两种情况:跑步是数越少越好;跳远、跳高是数越大越好。

  9、计算小数加、减法时,小数点对齐,也就是相同数位对齐,再相加、减。

  10、小数加减法计算:。

  (尤其注意:12-3.9; 9+8.3 等题的计算。)

  11、小数不一定比整数小。

  (如:5.1 >5 ;1.3 > 1等)

  三下数学期中复习知识点(数学广角)

  简单的排列:有序排列才能做到不重复、不遗漏。

  简单的组合:组合问题可以用连线的方法来解决。

  组合与排列的区别:排列与事物的顺序有关,而组合与事物的顺序无关。

  ★数学考试应注意:

  1、用手指着认真读题至少两遍;

  2、遇到不会的题不要停留太长时间,可在题目的前面做记号。(如:“?”)

  3、画图、连线时必须用尺子;

  4、检查时,要注意是否有漏写、少写的情况。