四四年级《积的变化规律》一等奖说课稿
我要投稿投诉建议四四年级《积的变化规律》一等奖说课稿
你们好!今天我说课的内容是积的变化规律,它选自人教版小学数学四年级上册第58页。
一、说教材
积的变化规律是在学生已经学习了三位数乘两位数、用计算器进行计算等知识的基础上进行教学的,它为学生今后学习小数乘法等知识铺平了道路,在本节课中,学生要学习积的变化规律。通过本节课的学习,对于发展学生的运算能力、合情推理能力具有十分重要的作用。
我们都知道,四年级的学生具有一定的经验,能够将新知识转化为已有的知识,但是他们的抽象思维还很弱,在理解积的变化规律的探究过程时会有一定的难度。基于以上对教材的分析和对学情的分析,我将理解积的变化规律确定为本节课的重点,将理解其探究过程确定为本节课的难点。并且拟定了以下三维目标:
1、能理解并掌握积的变化规律,能正确表述积的变化规律,并能正确运用。
2、经历积的变化规律的探究过程,学会观察、猜想、验证、概括的方法,感受变与不变的思想,发展学生的合情推理能力。
3、体验自主探索、合作交流的乐趣,培养学生献爱心的好品质。
二、说教学设想
为了有效地实现教学目标,在实施教学时,我将努力做到以下两个注重:
1、注重探究过程的经历:积的变化规律的探究过程需要经历从直观到抽象,从朦胧到清晰的过程,这过程需要学生通过观察、猜想、验证、概括等数学活动,从而理解积的变化规律,积累数学活动经验。
2、注重变与不变思想的渗透:通过将一个因数不变,另一个因数变化,来探索积的变化规律,发展学生的合情推理能力。
三、说教学流程
(一)创设情境,引入新课
同学们,为了响应学校“节省零花钱,牵手好朋友”的号召,我们班与希望小学四(1)班开展“手拉手,献爱心”活动,请你计算一下,一盒水彩笔6元,如果买2盒要花多少元?买20盒,买200盒呢?请同学们拿出草稿纸列式计算一下,学生会列出算式:6×2=12(元);6×20=120(元);6×200=1200(元)。(设计意图:通过创设“买文具”的具体情境,激活了学生原有的知识,激发了学生的积极性,为探究积的变化规律提供素材,做好铺垫。)
(二)自主探索,理解规律
第一层次:感知规律。观察这组算式,你发现了什么?什么变了,什么没变?先独立思考一下,有了想法之后四人一小组相互讨论,之后教师巡视,全班反馈。我会引导学生从上往下进行观察,学生会发现从①式到②式,从②式到③式,一个因数不变,另一个因数乘10,积也乘10;学生也会发现从①式到③式,一个因数不变,另一个因数乘100,积也乘100。那如果从下往上观察,你又发现了什么?学生会发现从式③到②式,从②式到①式,一个因数不变,另一个因数除以10,积也除以10;学生也会发现从③式到①式,一个因数不变,另一个因数除以100,积也除以100。那谁能用一句简洁的话来说一说你发现的规律,先独立说一说,再同桌之间相互说,从而由学生说出:一个因数不变,另一个因数乘(或除以)几,积也乘(或除以)几。
第二层次:提出猜想。同学们发现的规律是不是具有普遍性呢?我们需要再举一些例子来验证一下,看看会不会出现相同的情况,如果有一个例子出现不同的情况,我们就不能把发现当成规律。
第三层次:验证规律。请每个同学写出3个算式,同桌相互检查,并交流因数和积是怎样变化的?对于学有余力的学生,还可以让他们在别人的算式后面接着写一些。学生会写出7×12=84、7×6=42、7×3=21;或者6×150=900、6×30=180、6×6=36等等。
第四层次:归纳结论。同学们,黑板上这么多算式,现在你能完整地说一说这个变化规律?先独立地说一说,再同桌两人相互说,最后我会指名学生说,从而得出:一个因数不变,另一个因数乘(或除以)几,积也乘(或除以)几。这里除以的数可以为0吗?不能为0,因为0不能作除数。
第五层次:拓展延伸。刚刚大家已经知道了一个因数不变,另一个因数乘(或除以)几,积也乘(或除以)几。那么如果一个因数不变,另一个因数加(或减)几,积是不是也加(或减)几呢?学生会发现这是不成立的`,例如7×(12+1)≠(84+1)。
第六层次:解释应用。我会出示一个神奇缺八数。
12345679×9=111111111
12345679×18=222222222
12345679×27=( )
12345679×36=( )
12345679×45=( )
12345679×( )=( )
通过这个神奇缺八数的应用来让学生感受数学的神奇奥秘。
有效地数学学习是学生学与教师教的统一,在本环节中,通过让学生观察、猜想、验证、概括等数学活动,从而丰富了学生的体会,加深学生对积的变化规律的理解,从而突出重点,突破难点。
(三)学以致用,分层练习
我会将做一做作为基础练,以巩固新知识,检查学生是否理解和掌握积的变化规律。
我会将“一所小学扩建校园,准备将长方形操场的宽度从8变成24米,长不变,扩建前的面积是560平方米,问扩建后的操场面积是多少?”作为综合练,通过这道题来培养学生综合运用知识的能力。
24×75=1800 36×104=3744
(24○6)×(75×6)=1800 (36×4)×(104○4)=3744
(24○3)×(75○□)=1800 (36○□)×(104○□)=3744
我会将这道题作为拓展练,通过计算这几道题目,让学生发现一个因数乘几,另一个因数除以相同的数,他们的积是不变的,从而进行拓展,发展学生的抽象思维。
(四)课堂回眸,内化提升
第四环节:课堂回眸,内化提升。此时,我会请学生来说说这节课你学习到了什么,你有什么需要提醒其他同学注意的吗?从而结束本节课的课题。
一、学情分析
本节课内容是在学生已经学习了三位数乘两位数和使用计算器进行计算的基础上进行的,因此这节课中,我放手让孩子们自己去计算,去比较,再通过我的适时引导,让孩子用简洁的语言概括出积的变化规律。
二、教学目标
根据对教材和学情的分析,我制定了以下三维目标:
知识目标:
使学生结合具体情境,通过计算、观察、比较,发现积随因数变化而变化的规律,并在此基础上放手探讨积的变化规律。
能力目标:
培养学生初步的抽象概括能力和数学语言表达数学结论的能力。
情感目标:
体验探索和发现数学规律的过程,进一步产生对数学的好奇心与兴趣。
三、教学重难点
教学重点:
积随因数的变化规律。
教学难点:
引导学生自己发现规律、验证规律、应用规律。
四、教法
我引导学生在具体的情境中通过观察、猜想、验证来自主探索概括出积的变化规律。
五、学法
学生经历观察思考、提出猜想、验证猜想、表述规律、应用规律的自主探索过程,获得探索教学规律的一般经验。
六、教学具及相关资料
小黑板
七、教学流程
谈话导入猜想规律验证规律表述规律,小结探索方法应用规律拓展延伸课堂小结。
八、教学设计过程
1、谈话导入
课的开始我与孩子进行谈话学校为了奖励参加大扫除的学生,每人发一本笔记本,每本笔记本6元,买2本需要多少元钱?买20本,200本呢?孩子你们算算。
2、根据学生的回答,我板书三个算式及其结果:
62=12(元)
620=120(元)
6200=1200(元)
设计理念:我创造性地利用教材,将纯粹的算式赋予一定的生活意义,让孩子感受数学知识就在身边,从而更大地激发学生的学习兴趣。
(1)我提出问题:观察这三个算式,你会发现什么规律呢?
我引导孩子从上向下观察:因数到因数,积到积有什么规律。
(2)小组交流,集体汇报。让孩子把自己发现的规律讲给同伴听,经过小组内交流,孩子不难提出猜想:一个因数不变,另一个因数乘以几,积就乘以几。
(3)我引导孩子再次从下向上观察,这次孩子很快提出新的规律:一个因数不变,另一个因数除以几,积就除以几。
设计理念:孩子通过独立观察,小组交流,使学生真正体验自主探索和发现数学规律的过程。同时,我活用教材,用一组算式揭示两条规律,先后有序,主次分明。
3、验证规律
孩子都看出规律来了,那么这些规律是不是适合所有的算式呢?下面请孩子自己来验证一下。
我出示小黑板,男生女生分为两组,一组应用规律直接写出结果,另一组用笔算或计算器验证。两组交换角色再次验证。
设计理念:通过学生分组协作,体验验证数学规律的过程。
4、表述规律,小结探索方法。
我首先让学生说规律,趁势解释说明乘以几=扩大几倍,除以几=缩小几倍,学生在以往的基础之上,很容易接受这点。然后引导学生如何把两条规律归纳成一条,得出积的变化规律:两个因数相乘,一个因数不变,另一个因数扩大(或缩小)几倍,积就扩大(或缩小)几倍。我板书规律,揭示本课主题。最后我让孩子们说说这规律是如何得来的?
设计理念:孩子通过对探索过程的反思,逐步形成自己的思维策略。
5、应用规律
孩子自己完成教材1—4题。指明孩子自己说说如何得出结果的。个别孩子可能会提出:我用笔算也挺简单的,那我今天学的有什么用呢。好问题出来了,进入下一环节。
6、拓展延伸。
(1)一个数乘以18积是270,如果这个数乘以54,积是()。
(2)3610=360
(362)(362)=
(363)(363)=
设计理念:通过层次分明,形式多样的练习,可以有效地激发学生学习兴趣,拓展学生的思维空间,使不同的学生得到不同的发展。
7、课堂总结,内化规律。
这节课你学到了什么?学的高兴吗?
设计理念:培养学生自我总结、自我反思的学习能力。
九、教学效果分析
本节课我创造性地活用教材,营造了宽松、自主的学习氛围,孩子们通过看、想、说、做等数学活动,去经历主动观察独立思考小组交流提出猜想验证规律运用规律的过程,丰富了学生学习的体验,培养学生的数学思维。
各位评委,各位老师:
你们好!今天我说课的内容是积的变化规律,它选自人教版小学数学四年级上册第58页。
一、说教材
积的变化规律是在学生已经学习了三位数乘两位数、用计算器进行计算等知识的基础上进行教学的,它为学生今后学习小数乘法等知识铺平了道路,在本节课中,学生要学习积的变化规律。通过本节课的学习,对于发展学生的运算能力、合情推理能力具有十分重要的作用。
我们都知道,四年级的学生具有一定的经验,能够将新知识转化为已有的知识,但是他们的抽象思维还很弱,在理解积的变化规律的探究过程时会有一定的难度。基于以上对教材的分析和对学情的分析,我将理解积的`变化规律确定为本节课的重点,将理解其探究过程确定为本节课的难点。并且拟定了以下三维目标:
1.能理解并掌握积的变化规律,能正确表述积的变化规律,并能正确运用。
2.经历积的变化规律的探究过程,学会观察、猜想、验证、概括的方法,感受变与不变的思想,发展学生的合情推理能力。
3.体验自主探索、合作交流的乐趣,培养学生献爱心的好品质。
二、说教学设想
为了有效地实现教学目标,在实施教学时,我将努力做到以下两个注重:
1.注重探究过程的经历:积的变化规律的探究过程需要经历从直观到抽象,从朦胧到清晰的过程,这过程需要学生通过观察、猜想、验证、概括等数学活动,从而理解积的变化规律,积累数学活动经验。
2.注重变与不变思想的渗透:通过将一个因数不变,另一个因数变化,来探索积的变化规律,发展学生的合情推理能力。
三、说教学流程
(一)创设情境,引入新课
同学们,为了响应学校“节省零花钱,牵手好朋友”的号召,我们班与希望小学四(1)班开展“手拉手,献爱心”活动,请你计算一下,一盒水彩笔6元,如果买2盒要花多少元?买20盒,买200盒呢?请同学们拿出草稿纸列式计算一下,学生会列出算式:6×2=12(元);6×20=120(元);6×200=1200(元)。(设计意图:通过创设“买文具”的具体情境,激活了学生原有的知识,激发了学生的积极性,为探究积的变化规律提供素材,做好铺垫。)
(二)自主探索,理解规律
第一层次:感知规律。观察这组算式,你发现了什么?什么变了,什么没变?先独立思考一下,有了想法之后四人一小组相互讨论,之后教师巡视,全班反馈。我会引导学生从上往下进行观察,学生会发现从①式到②式,从②式到③式,一个因数不变,另一个因数乘10,积也乘10;学生也会发现从①式到③式,一个因数不变,另一个因数乘100,积也乘100。那如果从下往上观察,你又发现了什么?学生会发现从式③到②式,从②式到①式,一个因数不变,另一个因数除以10,积也除以10;学生也会发现从③式到①式,一个因数不变,另一个因数除以100,积也除以100。那谁能用一句简洁的话来说一说你发现的规律,先独立说一说,再同桌之间相互说,从而由学生说出:一个因数不变,另一个因数乘(或除以)几,积也乘(或除以)几。
第二层次:提出猜想。同学们发现的规律是不是具有普遍性呢?我们需要再举一些例子来验证一下,看看会不会出现相同的情况,如果有一个例子出现不同的情况,我们就不能把发现当成规律。
第三层次:验证规律。请每个同学写出3个算式,同桌相互检查,并交流因数和积是怎样变化的?对于学有余力的学生,还可以让他们在别人的算式后面接着写一些。学生会写出7×12=84、7×6=42、7×3=21;或者6×150=900、6×30=180、6×6=36等等。
第四层次:归纳结论。同学们,黑板上这么多算式,现在你能完整地说一说这个变化规律?先独立地说一说,再同桌两人相互说,最后我会指名学生说,从而得出:一个因数不变,另一个因数乘(或除以)几,积也乘(或除以)几。这里除以的数可以为0吗?不能为0,因为0不能作除数。
第五层次:拓展延伸。刚刚大家已经知道了一个因数不变,另一个因数乘(或除以)几,积也乘(或除以)几。那么如果一个因数不变,另一个因数加(或减)几,积是不是也加(或减)几呢?学生会发现这是不成立的,例如7×(12+1)≠(84+1)。
第六层次:解释应用。我会出示一个神奇缺八数。
12345679×9=111111111
12345679×18=222222222
12345679×27=( )
12345679×36=( )
12345679×45=( )
12345679×( )=( )
通过这个神奇缺八数的应用来让学生感受数学的神奇奥秘。
有效地数学学习是学生学与教师教的统一,在本环节中,通过让学生观察、猜想、验证、概括等数学活动,从而丰富了学生的体会,加深学生对积的变化规律的理解,从而突出重点,突破难点。
(三)学以致用,分层练习
我会将做一做作为基础练,以巩固新知识,检查学生是否理解和掌握积的变化规律。
我会将“一所小学扩建校园,准备将长方形操场的宽度从8变成24米,长不变,扩建前的面积是560平方米,问扩建后的操场面积是多少?”作为综合练,通过这道题来培养学生综合运用知识的能力。
24×75=1800 36×104=3744
(24○6)×(75×6)=1800 (36×4)×(104○4)=3744
(24○3)×(75○□)=1800 (36○□)×(104○□)=3744
我会将这道题作为拓展练,通过计算这几道题目,让学生发现一个因数乘几,另一个因数除以相同的数,他们的积是不变的,从而进行拓展,发展学生的抽象思维。
(四)课堂回眸,内化提升
第四环节:课堂回眸,内化提升。此时,我会请学生来说说这节课你学习到了什么,你有什么需要提醒其他同学注意的吗?从而结束本节课的课题。
教学内容:教科书第58页例4及“做一做”,练习九第1~4题。
教学目标:
1.使学生经历积的变化规律的发现过程,感受发现数学中的规律是一件十分有趣的事情。
2.尝试用简洁的语言表达积的变化规律,培养初步的概括和表达能力。
3.初步获得探索规律的一般方法和经验,发展学生的推理能力。
教、学具准备:多媒体课件
教学过程:
一、研究“两数相乘,其中一个因数变化,它们的积如何变化的规律”。
1.研究问题。
(1)两数相乘,其中一个因数扩大若干倍时,积怎么变化。
请学生完成下列两组计算,想一想发现了什么,并把发现写出来。
6×2=()8×125=()
6×20=()24×125=()
6×200=()72×125=()
(2)两数相乘,其中一个因数缩小若干倍时,积又怎么变化。
请学生完成下列两组计算,想一想又发现了什么?把发现也写出来。
80×4=()25×160=()
40×4=()25×40=()
20×4=()25×10=()
2.概括规律
(1)分层概括发现的规律。
①组织小组交流,让每一个学生先把在第⑴组算式中独立发现的.规律说给自己的同伴听。学生也许是就题说题,如,左边一组算式,发现的规律是:20是2的10倍,120也是12的10倍;右边一组算式,发现的规律是:24是8的3倍,3000也是1000的3倍。
②组织全班交流。在小组交流基础上,引导学生根据第(1)组算式中积随因数变化的情况,将发现的上述规律用一句话概括出来:“两数相乘,当其中一个因数扩大若干倍时,积也扩大相同的倍数。”
③再引导学生讨论第(2)组算式中积随因数变化的情况,与第(1)组算式的讨论过程相同,最后引导学生概括:“两数相乘,当其中一个因数缩小若干倍时,积也缩小相同的倍数。”
(2)整体概括规律。
问:“谁能用一句话将发现的两条规律概括为一条?”
引导学生将发现的两条规律概括为一条,并用简明的话语表示出来:两数相乘,一个因数不变,另一个因数扩大(或缩小)若干倍,积也扩大(或缩小)相同的倍数。
3.验证规律。
(1)先用积的变化规律填空,再用笔算或计算器验算。
26×48=124817×12=204
26×24=()17×24=()
26×12=()17×36=()
(2)自己举例说明积的变化规律。每位学生各写两组算式,一组3个,展现积分别随一个因数扩大、缩小的变化情况。
4.应用规律。
完成例4下面的“做一做”和练习九第1~4题。
二、研究“两数相乘,两个因数都发生变化,它们的积变化的规律。”(这部分内容作为弹性要求,应视学生情况决定是否选用。)
(1)独立思考,发现规律。
①请学生完成下列计算,并在组内述说自己发现的规律。
18×24=105×45=
(18÷2)×(24×2)=(105×3)×(45÷3)=
(18×2)×(24÷2)=(105÷5)×(45×5)=
②组织全班交流,让学生用自己的话概括发现的规律,然后指导学生用数学语言进行概括:两数相乘,一个因数扩大(或缩小)若干倍,另一个因数缩小(或扩大)相同的倍数,它们的乘积不变。
(2)应用规律解决问题。
①在○中填上运算符号,在□中填上数。
24×75=180036×104=3744
(24○6)×(75×6)=1800(36×4)×(104○4)=3744
(24○3)×(75○□)=1800(36○□)×(104○□)=3744
②一个长方形的面积是256平方厘米,如果长缩小4倍,宽扩大4倍,这个长方形就变成了正方形,这个正方形的面积是多少?它的边长是多少?
教学目标:
1、通过观察、操作、抽象、概括、合作和交流等活动中,感知解决问题的多样性,掌握两类事物一共有多少种不同的搭配方法的规律。
2、通过有序搭配培养学生的有序思考和全面思考问题的习惯。
3、学生在探索规律的过程中,增强与他人合作交流的意识,获得一些成功的体验,提高学习数学的兴趣和信心。
教学重点:学会有序地思考,掌握求两类事物搭配方法数的规律。
教学难点:学会探究规律的方法。
教具准备:图片(教具和学具)、课件。
教学过程:
一、创设情境,谈话导入。
1、时间过得真快,老师教大家都快一年了吧!大家觉我怎么样?我们相处得怎么样?为了表示我们的友好,咱们来握握手吧,好吗?
谁先来和我握手?(一边握手)我想要和每一位同学都握一次手,我一共要握多少次手?要想正好握满54次手,在握手的时候我们应该注意什么呢?(不要重复!不要漏掉!)怎样才能确保既不重复又不遗漏呢?(板书:按顺序,有条理)
你觉得我们按什么样的顺序握比较好?除了让我找同学握手,还可以怎么握?(可以是老师按顺序找学生握,也可以学生按顺序找老师握。)
2、在数学上,我们把握手这一类的'问题叫做搭配问题(板书:搭配)。今天这节课我们就来研究搭配的规律。(板书:的规律)
二、动手操作,探究规律。
1、(出示动画)下面先请同学们看屏幕,谁能说说图中的小明想要做什么?(小明要买一个木偶再配一顶帽子)
老师也准备了木偶和帽子,(教师在黑板上出示五张图片)看到这些,你想提出什么问题?学生的问题可能有:
A、小明为什么要买木偶娃娃呢?(让学生各抒己见)
B、小明最喜欢哪一种搭配呢?(你最喜欢哪一种搭配?)
C、一共有多少种搭配的方法?
谁能给大家想个好办法来帮助大家解决这个问题?(让学生各抒己见。配一配、连一连、算一算)
(1)我们可以先动手配一配。(板书:配一配)
我们在搭配的时候,应该注意什么问题?下面就请同座位同学合作,用学具配一配,看看哪两个同学搭配得最有条理。
请一位同学上黑板给大家说一说,你是按什么顺序来搭配的?(请学生演示:可以先选定一个木偶,再用它和两顶帽子分别搭配。每个木偶都有两种配法,三个木偶一共就有23=6种配法。)
还可以按什么顺序搭配?(请学生演示:还可以先选定一顶帽子,再用它和三个木偶分别搭配。每顶帽子都有三种配法,两顶帽子一共就有32=6种配法。)
(2)除了动手配一配,还有什么好办法能帮助我们解答这个问题?(板书:连一连)(出示图形)请同学看屏幕,如果用我们图形表示帽子和木偶,你会连吗?请同学们打开课本第51页,用尺在书上连一连。
谁能告诉大家你是按什么顺序连的?有没有连得不相同的?(请学生在黑板上指出来,然后教师出示投影。)
(3)刚才我们用配一配和连一连的方法解答了这道题,你们从中有没有发现什么规律?(木偶的个数和帽子顶数的乘积就是搭配的种数。)这道题应该怎样列式计算呢?(板书:32=6(种))
您现在正在阅读的《搭配的规律》教学设计文章内容由收集!本站将为您提供更多的精品教学资源!《搭配的规律》教学设计这说明,我们在研究两种事物一共有多少种搭配方法时,还可以用算一算的方法。(板书:算一算)谁能说一说,我们在算之前,应该先弄清楚什么?再怎样计算?(应该先了解两种事物各有多少个,再将这两种事物的个数相乘就求出一共有多少种搭配方法了。)
(4)这道题我可以用这三种方法来解答。你最喜欢哪一种?为什么?
三、全课小结。
通过今天这节课的学习,我们学到了什么?(板书:方法、注意)你还有哪些不明白的地方?
四、巩固运用,深化规律。
这节课我们学习的知识,在我们日常生活中非常有用,今天老师就给大家带来了跟我们衣食住行有关的题目想考考你们,大家有没有信心?
1、下面先请同学们看屏幕,从图中你能知道什么?一共有多少种配菜的方法?你是怎么想的?还有别的想法吗?
2、再请同学们看屏幕,你是怎么想的?还有别的想法吗?
3、再请同学们看屏幕,你是怎么想的?
我们已经知道从学校到少年宫一共有8条不同的路可走。如果老师把这道题改一下,你会做吗?你是怎么想的?
4、老师还有一道思考题,大家想不想试一试?(出示思考题)同学们可以写一写,看谁想出答案最多,排得最有序。
5、今天有很多老师是第一次来我们班听课,为了表示我们的热情和友好,我们可以怎么做?如果全班同学都和每一位老师都握一次手,一共要握多少次呢?你是怎么想的?
五、小结:今天这节课同学不仅仅学会了搭配的规律,更重要的是掌握了探究数学问题的方法和应该注意的问题,希望同学今后能运用这些方法掌握更多的数学知识。
六、板书设计:
配一配
搭 方法 连一连
配 算一算
的 按顺序
规 注意
律 有条理
教学目标
牢固掌握小数点位置移动的变化规律,并会应用规律把一个数扩大或缩小10倍、100倍、l000倍。教学重点:会应用规律把一个数扩大或缩小10倍、100倍、1000倍
教学难点:向右移动时位数不够要在右边添“0”,前面最高位的零必须去掉;向左移动时,位数不够时要在数的左边用“0”补足。
教学环节问题情境与
教师活动学生活动媒体应用设计意图
目标达成
导入新 课一、复习引入:
1、小数点向左移动三位,原数就()。
2、小数点向右移动两位,原数就()。
3、5.24要扩大10倍,小数点向()移动()位,得()。
4、把42.7写成0.427,小数点向( )移动( )位。
5、说说小数点移位的变化规律。
6、如果把3扩大10倍,100倍,1000倍应怎样列式?得多少?
7、如果把5000缩小10倍,l00倍,1000倍应怎样计算?各得多少?
二、新知学习
师:我们已经学过把一个数扩大倍数要用乘法计算,把一个数缩小倍数用除法计算,我们今天应用学过的小数点移位的变化规律,要把一个数扩大或缩小10倍,100倍,1000倍,只要移动小数点的.位置就可以了。怎样移动呢?(板书课题:小数点位置移动规律的应用)
1、教学例2(1):把0.07扩大l0倍、100倍、1000倍,各是多少? 提问:
(1)把一个数扩大倍数用什么方法计算?(用乘法计算)
(2)怎样列式?(把0.08分别乘以10,100,1000)
板书:0.07×10=0.7
0.07×100=7
0.07×1000=70
(3)根据学过的规律,应怎样移动小数点? 启发学生分别说出移动的位数及得数。(板书)
(4)为什么0.07×1000得70?
(因为要扩大1000倍,需向右移动三位,而原数只有两位小数,还差一位,所以要在右边添一个0,补足数位。)
(5)0.07×100=7,为什么向右移动两位后得7,而不写成007?
引导学生明确,小数点向右移动后,不是零的最高位前面的零必须去掉,如0.07扩大1000倍得70,而不能得0070。
小结式提问: 根据上面的计算,要把一个数扩大10倍、100倍、1000倍,只要怎样就可以了? (只要把小数点向右移动就可以了)
(6)练习:P45做一做1
2、教学例2(2):把3.2缩小10倍,100倍,1000倍各是多少?
(1)思考一下,把一个数缩小倍数应用什么方法计算?怎样应用小数点移动的规律?可能会出现什么情况?如何解决?
板书:3.2÷10=0.32
3.2÷100=0.032
3.2÷1000=0.0032
(2)说明: 3.2÷100,小数点向左移动两位后,整数部分没有了,用0表示,所以在小数左边还要添一个0,表示整数部分是“0”。
启发学生说一说,为什么3.2÷1000=0.0032?从而强调,小数点向左移动三位,左边小数位数不够,要在左边用“0”补足,缺几位就补几个“0”,再点上小数点,左边整数部分也没有了,因此小数点左边还要添一个“0”,表示整数部分是“0”,所以3.2缩小1000倍得0.0032。
(3)练习:P45做一做2
3、总结性提问:
(1)小数点向左或右移动的方向根据什么?
(2)小数点位置移动的位数由什么来决定?
(3)应用小数点移位规律时应注意什么?
4、教学例3
(1)阅读课文,自学
(2)做一做
三、巩固练习:练习十一首先让学生独立试算,然后二人议论,最后全班交流。
教学目标:
1、通过合作探究,找到两个物体间隔排列时,两端的物体比中间的多1,中间的物体比两端的少1这一规律。
2、能够利用这一规律解释生活中的现象,解决生活中的问题。
3、学生经历探索规律的过程,在动手操作,自主探索与交流合作中,掌握观察、分析、比较的方法。
4、在解决问题的过程中,感受解决问题策略的多样化的思想。培养学生发现与应用规律的积极性和好奇心以及学习数学的兴趣。
教学重点:学生经历间隔排列规律的探索过程,找到两种物体间隔排列时,两端的物体比中间的物体多1,中间的物体比两端的物体少1这一规律。
教学难点:学生能用恰当的方式表述找到的规律。
课前准备:每小组若干小棒和圆片,课件,表格。
课前谈话,感知规律:
师:今天在这里上课和我们平时有什么不同啊?
(预设:学生:教室大,有很多老师来听课,座位进行了调整)
师:今天的座位安排有什么特别的地方?(学生初步感知间隔排列)
教学过程:
一、创设情境,探索规律:
1、寻找规律:
出示例题里的场景图
师:从图中你看到了什么?这幅图中有这样三组排列。这些排列都蕴涵着规律,今天我们就一起来学习找规律。
师:每幅图中两种物体是怎样排列的?
师:这属于一种间隔排列,图1中夹子排在开始和最后,我们把它看作两端的物体,手帕排在中间,我们把它看作中间的物体。
谁能说说下面两幅图中,两端的物体和中间的物体各是什么?
2、探究规律:
师:看到这三组排列,你还想提出什么问题?
课件出示:每组排列中两种物体的数目有什么关系?(先独立完成表格,再在小组里说一说)
两端的物体 数目 中间的物体 数目
夹子 手帕
兔子 蘑菇
木桩 篱笆
你发现了什么规律?在小组里说一说。
小组汇报。
二、动手操作,验证规律:
1、师:是不是这样排列的两种物体都有这样的规律呢?下面我们动手验证一下。
2、动手操作:
课件出示要求:任意拿几根小棒,在桌上摆成一排,再在每两根小棒中间摆1个圆。数数小棒的根数与圆的个数,看看有什么关系。
3、集体交流:
师:谁来和大家说说你是怎样摆的?你发现了什么?
小结:其实这里的小棒就可以代表一切两端的物体,圆片就可以代表一切中间的物体。像这样排列,它们都有这样的规律:两端的物体比中间的物体多1。
三、联系实际,应用规律:
1、列举规律:
师:生活中你见到过有这种规律的现象吗?
2、应用规律:
(1)基本练习:
①出示一组排列。
填空:两端的物体是( ),中间的物体是( ),( )比()多1个。
②这根绳子被打了6个结,这根绳子被分成了多少段?你是怎么想的?
③经过了15个白天,那么经过了多少个黑夜?
(2)变式练习:
①间隔问题:(课件出示刘翔跨栏图)
师:看!这是谁?刘翔在2004年雅典奥运会上一举夺得男子110米栏的冠军,成为中国人心中的骄傲。其实在刘翔的运动场地上也有咱们今天研究的规律呢。
出示:110米跨栏,10个栏中间有多少个间隔?
②锯木料问题:想想做做第2题
把一根木料锯3次,能锯成多少段?
引导学生用图表示出锯木料的过程,再结合所学的规律来分析。
③圆周问题:
欣赏:西湖苏堤春晓图
师:人们常说,上有天堂,下有苏杭,杭州的美在于西湖的美,前人在苏堤的岸边栽了一行柳树,再在每棵柳树中间栽一棵桃树,这样就有了桃柳夹岸,桃红柳绿之说。
如果在西湖的一周栽75棵柳树,每两棵柳树中间栽一棵桃树,可以栽桃树多少棵?
a:质疑:有的同学说74棵,有的同学说75棵,还有的说76棵,那像这样栽柳树和桃树,它们的棵数之间到底有什么关系呢?
b:探究规律:你们能想办法找出来吗?在小组内试一试。
c:汇报小结:谁给大家介绍介绍你们小组想到的方法,你们发现了什么?
小结:把桃树和柳树像这样栽成一周,桃树和柳树的棵数怎么样?那在西湖的一周栽75棵柳树,中间间隔着栽桃树,可以栽多少棵桃树?
d:对比联系:
师:前面发现间隔排列的两种物体,两端的物体比中间的物体多1,而在圆周上,它们为什么又是相等的呢?
(课件演示:把直线转化成圆周,两端的物体重合)
④机动练习:
师:国庆节就要到了,学校计划在校园主干道一边按照一一间隔的规律来摆设鲜花美化校园。(课件出示图)
有25盆蓝花,猜猜看有多少盆红花?你是怎么想的?还有其他的想法吗?
师:大家想到了三种方案,这些方案都是可行的,看来,你们要是做美化设计师还是挺称职的。课后大家可以利用今天学的规律来设计美化教室或者自己的卧室。
四、总结评价:
师:今天我们研究了一些排列的规律,当我们面对新的事物或者更复杂的情况时,要学会寻求方法来探索规律解决问题。
五、板书设计:(略)
教后反思:
这节课是我执教的一节市级分片公开课,本次公开教学活动的主题是:转变学习方式,加强有效学习。而转变学习方式主要是从自主学习、探究学习、合作学习这三方面转变。从这节课的教学设计一直到实际教学,我对了探究性学习和合作学习也有了一些新的认识,下面我想具体谈一谈自己的看法。
一、小学课堂教学中怎样渗透探究性学习呢?
我觉得可以通过以下几点来渗透探究性学习。
第一:巧设质疑,营造探究氛围,激发学生探究性学习意识。
1、导入精彩,吸引学生的注意力。
教师是课堂心理环境的直接创设者。教师导入的语言、方法直接影响学生的学习兴趣及其探索知识的欲望。
2、创设问题情境,调动学生的积极性。
由于学生探究性学习的积极性和主动性很大程度上来自于充满问题的情境,课堂教学的学习内容、呈现方式应该贴近学生的生活实际,然后创设情境,提供必要的学习材料,留出充足的时间和空间,组织学生主动探究,这样才能营造良好的心理氛围,促使学生创新能力发展。
3、巧设质疑,创设探究情境。
质疑是学生探究性学习的前提。质疑引入课堂,教师应引导学生在学习新知的基础上,大胆质疑,积极探索。一般来说,质疑主要设在教学内容的关键处,形式不拘一格,只要能激发学生的探究热情和明确探究方向即可。
例如:在练习里探究封闭图形中间隔排列的两种物体的个数关系时,让学生来猜猜桃树的棵数,这样学生产生矛盾、质疑,学生产生探究的欲望,同时教师提供给学生一些所需的材料(小棒、圆片、纸、笔等),留出充分的'时间和空间,让学生主动探究发现规律。
第二、在探究、发现知识过程中发展创新思维能力。
1、自主探索,养成自主学习习惯。
自主探索要让学生根据自己得生活体验或已有的知识背景去探索知识。从某种意义上来讲,自主探索的目的不单纯在于数学知识的掌握,而在于数学方法的掌握与情感体验的获得;通过自主探索获得再创造的体验,要使全体学生都能主动地得到发展,就必须使全体学生都能参与到探究新知的过程,为他们创造一个独立思考的空间。
2、合作探究学习,强化探究效果。
合作探究学习要让学生在自主探索的基础上,以学习小组或全班为单位充分展示自己的思维并相互进行交流达到取长补短的目的。合作能实现知识互补和能力互补,达到共同进步。同时合作交流给学生提供了一个充分展示自己的舞台,弥补了传统教学中课堂发言机会有限的缺陷,也培养了学生听说交往和组织等方面的能力。
例如:在本节课中安排了这样三次探究活动:例题中探究三组排列中两种物体的数目关系、探究锯木料中木料的端数与锯的次数之间的关系、探究封闭图形中间隔排列的两种物体的个数关系。在这三次探究活动中,可以说自主探究与合作探究交相辉映。探究三组排列中两种物体的数目关系主要体现自主探究,探究锯木料中木料的端数与锯的次数之间的关系是自主探究和合作探究相结合,而探究封闭图形中间隔排列的两种物体的个数关系更加体现了合作探究。
第三、实践运用,注重发展学生的创新思维能力。
实践运用也是探究性学习的重要环节。数学知识的学习和掌握,最后都要归结到实践运用中去。那在课堂中怎样渗透其运用,发展学生的创新思维能力呢?
1、挖掘教材潜力,发展学生的应用意识。
现在的数学教材内容具有一定的抽象性,呈现内容的方式是单一的、静态的。因此教师要认真钻研和熟悉教材,把蕴涵在教材中的那些可以让学生开展探究学习的资源挖掘出来,精心设计探究活动。为学生提供合适的、开放的探究学习材料,让学生进入一个自由选择、自主发现的学习活动平台。
2、综合实践课。
综合实践活动课是培养学生创新精神和实践能力的一门重要课程,而创新思维能力是其中的核心问题,它能使学生在各种探究学习活动中,有效地进行帮助学生形成主动探究问题的习惯和能力,为创新能力的发展打下基础。
例如:在本节课中,锯木料的问题和沿圆周栽桃数和柳数只是教材中安排的练习题,但我把它们设计成两组的探究性学习环节,这样既解决了问题,更重要的是培养了学生探究的能力。、
又如:我安排的机动练习中,摆放蓝花和红花的问题。学生设计出了三种摆放方法(两头蓝花、两头红花、头尾不同),甚至还有学生提出沿教学楼摆放一周的情况,可见学生对规律的掌握、应用的能力非常强,更加看出学生的创新能力得到了培养和发展。
二、怎样进行有效的合作学习呢?
我认为有效的合作学习应该按照以下几个方面进行。
第一:合理组建学习小组,追求学生之间的互助与合作。要把学习能力、成绩甚至性格等方面不同的学生按一定的比例搭配好。这样,小组内的学生在能力、个性、性别等方面是不同且互补的,便于学生之间互相学习、互相帮助,充分发挥小组合作的作用;
第二:教给学生合作学习的方法。一是学会倾听,不随便打断别人的发言,努力掌握别人发言的要点,对别人的发言作出评价;二是学会质疑,听不懂时,请求对方作进一步的解释;三是学会组织、主持小组学习,能根据他人的观点,做总结性发言。使学生在交流中不断完善自己的认识,不断产生新的想法,同时也在交流和碰撞中,一次又一次地学会理解他人,尊重他人,共享他人的思维方法和思维成果。
第三:提供合作学习的内容,把握合作学习的时机。一是在学生学习遇困难时,教师要善于把问题交给小组,在小组内开展合作学习,让每个学生积极地承担个人的责任,学生在活动中相互支持,相互配合,通过合作,提高学习效率,增强合作精神。二是意见不一或答案多样时也是合作的好时机。
第四:加强合作学习的评价。合作学习中的评价有自我评价与同伴评价、学生评价与教师评价。传统的课堂以教师对学生的评价为主,对结果评价为主;新课程下课堂应该采用多元的评价方式,更要注意把过程评价和结果评价相结合,除了评价学生个体的学习过程,还要评价学生在小组合作学习中的行为、能力、情感、态度等变化。
对于第一点和第二点,我想应该从平时的课堂中加以重视和培养,而第三点和第四点应该是针对每节课的具体内容和具体情况来定的。
一、教学目标
(一)知识与技能
进一步认识单价、速度的含义,会用“所花的钱/数量”表示单价,“所走的路程/时间单位”表示速度。
(二)过程与方法
经历从实际问题中抽象出单价、数量和总价,速度、时间和路程之间的关系,并能应用这种关系解决问题。获得解决问题的策略,提升解决问题的能力。
(三)情感态度和价值观
初步解生活中常见的数量及数量关系,树立生活中处处有数学的思想。
二、教学重难点
教学重点:引导学生在解决问题过程中理解“单价、速度”的概念,理解并应用三量之间的数量关系。
教学难点:用术语表达、理解“单价、速度”的概念,掌握用符合单位表示“单价、速度”的方法。
三、教学准备
课件
四、教学过程
(一)具体情境导入
1.出示教材52页例4、53页例5
师:在前面的学习中,我们经常会见到一些数量关系。
学生独立解答
2.引入课题:
看来大家对我们学习的知识已经基本掌握了,今天我们就来总结这两种常见的数量关系。(板书课题)
【设计意图】学生已经会解决实际中关于单价、数量、总价,速度、时间、路程的问题,通过解决例4、5,唤起学生对此类问题的回顾,激发起学生探究知识的欲望。
(二)探究新知
1.认识单价、数量、总价,概括“单价×数量=总价”
(1)
师:这两个问题有什么共同点?
生1:都是已知每件商品的价钱。
生2:还知道买了多少件商品,算共花的钱数。
(2)出示发票:
师:你能从这张发票中看出光明小学的购物情况吗?
(学生分别从数量栏、单价栏、金额栏、货物名称栏了解购物结果。)
①认识理解“单价”。
师:看来发票里包含了许多的数学知识。你知道发票中的“单价”是什么意思吗?(板书:单价)
师:是的,每件商品的价格就是它的单价,你还知道哪些物品的单价?(学生介绍学习用品类、服饰类、食品类的物品单价)
师:发票中的2000元表示什么意思?(板书:总价)
②说一说,算一算。
师:出示问题:
橙汁每瓶4元,一箱12瓶共多少元?
每箱橙汁40元,200元可以买这样的几箱?
200元可以买5箱橙汁,每箱橙汁多少元?
已知( )和( ),求( )。数量关系式为( ),算式( )。
学生独立练习
生汇报、交流。
生:讨论并发现验证:单价×数量=总价,总价÷单价=数量,总价÷数量=单价。补充完整板书。
【设计意图】从学生已有的知识和经验出发,通过学生自己质疑、释疑认识单价、数量、总价,并初步感知单价、数量、总价之间的关系。积累有关单价、数量、总价丰富感知。
2.认识速度、时间、路程,概括“速度×时间=路程
(1)
师:这两个问题有什么共同点?
生1:都是已知每小时或每分钟行的路。
生2:还知道行了几小时或几分钟,算共行了多少千米
(2)联系实际,认识速度
师:生活中这样的例子很多,下面我们一起来感受一下物体的速度。(课件出示)
蜗牛爬行的速度大约是8米/时。
人步行的速度大约为4千米/时。
声音传播的速度大约为340米/秒。
光传播的速度大约为30万千米/秒。
师:我们把这样,每小时或每分行的路程叫做速度。
人步行的速度是4千米/时,(板书:4千米/时)观察表示速度的单位,是由哪些我们学过的单位组成的?
生:速度的单位是由路程单位和时间单位组成的。
师:对,速度的单位是由路程单位和时间单位组成的,中间用斜线隔开。读作4千米每时。
你知道4千米/时表示什么吗?
生:24千米/时表示人1小时大约走4千米。
师:你能像这样写出并读出蜗牛、声音传播、光传播的速度吗?
【设计意图】出示生活中常见的速度,拓展学生对日常生活中速度的认识,通过实例和交流,给予学生充分的自主探索的空间,真正明确了路程、时间、速度这三者的关系。培养了学生收集、处理信息的能力和获取知识的能力。并且加深了学生运用所学知识解决生活中的问题的意识。
(3)经历公式形成的过程。
师:那么怎样求速度?
生:路程÷时间=速度
师:请写出下面各物体的速度
①一列火车2时行驶180千米,这列火车的速度是_________
②自行车3分钟行驶600米,这辆自行车的'速度是_________
③一名运动员8秒跑了80米,这名运动员的速度是________
生:这列火车的速度是90千米/时,这辆自行车的速度是200米/分,这名运动员的速度是10米/秒。
(4)理解单位时间,理解速度的意义。
师:观察这三组速度,他们都是多长时间行驶的路程?
生:他们都是一时、一分、一秒行驶的路程。
师:对,我们把这样的一时、一分、一秒都称为单位时间。你现在能来试着说一说什么是速度吗?
生:在单位时间里行驶的路程就叫速度。
【设计意图】路程、时间与速度这三个相关联的量,学生原来只能模糊地感知,不能清晰地表达,所以,我通过提问:速度单位与我们学过的单位有什么不同?剖析出速度的单位是由长度单位和时间单位共同组成的,帮助学生进一步理解速度的含义,通过观察和比较几个速度单位的相同和不同之处,既形象地帮助学生建立概念,又理解了速度的概念,知道速度是单位时间内所行驶的长度,这样就架构起行程问题中三个数量之间联系的桥梁。
(5)经历公式形成的过程。
师:解决下面的问题。
甲乙两地有240千米,一辆汽车的行驶速度为60千米/时,从甲地到乙地行驶了4小时。
①60×4表示什么?
②240÷4表示什么?
③240÷60表示什么?
已知( )和( ),求( )。数量关系式为( )。
生2:这两道题都是知道了速度和时间,求路程。
师:怎样求路程?
生:速度×时间=路程
师:猜测一下怎样求时间?为什么这样猜?
生:路程÷速度=时间,我认为根据速度×时间=路程,知道了积和一个因数,求另一个因数用除法计算。
师:同学们猜测得到底对不对,想来验证一下吗?计算第(2)、(3)题,说说你有什么发现?
生:我发现了这两道题都是已知路程和速度,求时间,用路程÷速度=时间,证明我们的猜测是正确的。
【设计意图】在学生充分理解路程、时间与速度这三个量的基础上,提出问题:这些量之间的关系是什么?根据学生的回答,让他们经历猜测和验证的过程。在这个教学重点环节里,我留给学生充分的时间探究,通过小组讨论总结、归纳数量关系,围绕“总结---归纳”二个环节进行学法指导,帮助学生深刻领会路程、时间与速度之间的密切联系。
(三)实际运用
1.他会超速吗?带有这个标志的路共长140千米,张叔叔驾车想花2小时开完这一段路。
师:你怎么理解限速60千米/时?你想对张叔叔说些什么?
2.客车的平均速度是80千米/时,它行7小时能否到上海?你能想出几种方法来解决?
生1:比路程。
生2:比速度。
生3:比时间。
3.小丽去文具店买文具,不小心把购物发票弄脏了,你能帮她算出笔记本每本多少元吗?
学生独立解答。
【设计意图】通过解决实际问题的练习,鼓励学生联系已有知识,寻求不同的解决方法,发展学生的数学思维能力。
(四)回顾梳理
本堂课我们学习了什么知识?你有什么收获?
【设计意图】通过师生共同梳理,让学生对两种常见的数量关系有系统的认识。
Copyright © 2009-2023 GDZZZ.Com. All Rights Reserved . ICP备案号:粤ICP备19010561号