《角的平分线的性质》一等奖说课稿

我要投稿投诉建议
您现在的位置:首页 > 范文 > 教师工作 > 说课稿

《角的平分线的性质》一等奖说课稿

2023-09-01 11:22:35

  《角的平分线的性质》一等奖说课稿

《角的平分线的性质》一等奖说课稿

1、《角的平分线的性质》一等奖说课稿

  作为一位不辞辛劳的人民教师,时常要开展说课稿准备工作,说课稿有助于教学取得成功、提高教学质量。那么优秀的说课稿是什么样的呢?下面是小编帮大家整理的《角的平分线的性质》说课稿,仅供参考,大家一起来看看吧。

  一、教材分析

  本节课选自新人教版教材《数学》八年级上册第十一章第三节,是在七年级学习了角平分线的概念和前面刚学完证明直角三角形全等的基础上进行教学的。角平分线的性质为证明线段或角相等开辟了新的途径,简化了证明过程,同时也是全等三角形知识的延续,又为后面角平分线的判定定理的学习奠定了基础。因此,本节内容在数学知识体系中起到了承上启下的作用。同时教材的安排由浅入深、由易到难、知识结构合理,符合学生的心理特点和认知规律。

  二、教学内容

  本节课的教学内容包括角的平分线的作法、角的平分线的性质及初步应用。

  内容解析:

  教材通过充分利用现实生活中的实物原型,培养学生在实际问题中建立数学模型的能力。作角的平分线是几何作图中的基本作图。角的平分线的性质是全等三角形知识的延续,也是今后证明两个角相等或证明两条线段相等的重要依据。因此,本节内容在数学知识体系中起到了承上启下的作用。

  三、教学目标

  1、基本知识:了解尺规作图的原理及角的平分线的性质。

  2、基本技能

  (1)会用尺规作图作角的平分线。

  (2)会利用全等三角形证明角平分线的性质。

  (3)能运用角的平分线性质定理解决简单的几何问题。

  3、数学思想方法:从特殊到一般。

  4、基本活动经验:体验从操作、测量、猜想、验证的过程,获得验证几何命题正确性的一般过程的活动经验。

  目标解析:

  通过让学生经历动手操作,合作交流,自主探究等过程,培养学生用数学知识解决问题的能力和数学建模能力了解角的平分线的性质在生产,生活中的应用培养学生探究问题的兴趣,增强解决问题的信心,获得解决问题的成功体验,激发学生应用数学的热情。

  四、学情分析

  刚进入初二的学生观察、操作、猜想能力较强,但归纳、运用数学意识的思想比较薄弱,思维的广阔性、敏捷性、灵活性比较欠缺,需要在课堂教学中进一步加强引导。根据学生的认知特点和接受水平,我把第一课时的教学重点定为:掌握角平分线的尺规作图,理解角的平分线的性质并能初步运用,难点是角平分线的性质的探究

  教学难点突破方法:

  (1)利用多媒体动态显示角平分线性质的本质内容,在学生脑海中加深印象,从而对性质定理正确使用;

  (2)通过对比教学让学生选择简单的方法解决问题;

  (3)通过多媒体创设具有启发性的问题情境,使学生在积极的思维状态中进行学习。

  五、教法和学法

  本节课我坚持“教与学、知识与能力的辩证统一”和“使每个学生都得到充分发展”的原则,采用引导式探索发现法、主动式探究法、讲授教学法,引导学生自主学习、合作学习和探究学习,指导学生“动手操作,合作交流,自主探究”。鼓励学生多思、多说、多练,坚持师生间的多向交流,努力做到教法、学法的最优组合。

  教学辅助手段:根据本节课的实际教学需要,我选择多媒体PPT课件,几何画板软件教学,将有关教学内容用动态的方式展示出来,让学生能够进行直观地观察,并留下清晰的印象,从而发现变化之中的'不变。这样,吸引了学生的注意力,激发了学生学习数学的兴趣,有利于学生对知识点的理解和掌握。

  六、教学过程的设计

  活动1、创设情景

  [教学内容1]

  生活中有很多数学问题:

  小明家居住在一栋居民楼的一楼,刚好位于一条暖气和天然气管道所成角的平分线上的P点,要从P点建两条管道,分别与暖气管道和天然气管道相连。

  问题1:怎样修建管道最短?

  问题2:新修的两条管道长度有什么关系,画来看一看。

  [整合点1]利用多媒体渲染气氛,激发情感。

  教师利用多媒体展示,引领学生进入实际问题情景中,利用信息技术既生动展示问题,同时又通过图片让学生身临其境般感受生活。学生动手画图,猜测并说出观察到的结论。引导学生了解角的平分线有很多未知的性质需我们来解开,并板书课题。

  [设计意图]依据新课程理念,教师要创造性地使用教材,作为本课的第一个引例,从学生的生活出发,激发学生的学习兴趣,培养学生运用数学知识,解决实际问题的意识,复习了点到直线的距离这一概念,为后续的学习作好知识上的储备。

  活动2、探究体验

  [教学内容2]

  要研究角的平分线的性质我们必须会画角的平分线,工人师傅常用如图所示的简易平分角的仪器来画角的平分线。出示仪器模型,介绍仪器特点(有两对边相等),将A点放在角的顶点处,AB和AD沿角的两边放下,过AC画一条射线AE,AE即为∠BAD的平分线。

  教师继续引导,用多媒体展示实验过程,学生口述,用三角形全等的方法证明AE是∠BAD的平分线。

  [设计意图]帮助学生体验从生产生活中分离,抽象出数学模型,并主动运用所学知识来解决问题。

  从上面的探究中可以得到作已知角的平分线的方法。

  [教学内容3]

  把简易平分角的仪器放在角的两边时,平分角的仪器两边相等,从几何作图角度怎么画?BC=DC,从几何作图角度怎么画?

  教师提问,学生分组交流,归纳角的平分线的作法,口述证明角平分线的过程。

  [设计意图]根据画图过程,从实验操作中获得启示,明确几何作图的基本思路和方法,师生交流并归纳。

  教师先在黑板上示范作图,再利用多媒体演示作图过程及画法,加深印象,并强调尺规作图的规范性。

  利用三角形全等证明角平分线,进一步明确命题的题设与结论,熟悉几何证明过程。

  [教学内容4]

  作一个平角∠AOB的平分线OC,反向延长OC得到直线CD,请学生说出直线CD与AB的位置关系。并在此基础上再作出一个45的角。

  学生独立作图思考,发现直线AB与CD垂直。

  [设计意图]

  通过作特殊角的平分线,让学生掌握过直线上一点作已知直线的垂线及特殊角的方法,达到培养学生的发散思维的目的。

2、《角的平分线的性质》一等奖说课稿

  (一)创设情境导入新课

  不利用工具,请你将一张用纸片做的角分成两个相等的角。你有什么办法?

  如果前面活动中的纸片换成木板、钢板等没法折的角,又该怎么办呢?

  设计目的:能聚拢学生的思维为新课的开展创造了良好的教学氛围。

  (二)合作交流探究新知

  (活动一)探究角平分仪的原理。具体过程如下:

  播放美国总统访问我国的录像资料------引出雨伞-----观察它的截面图,使学生认清其中的边角关系-----引出角平分线;并且运用几何画板对伞的开合进行动态演示,让学生直观感受伞面形成的角与主杆的关系-----让学生设计制作角平分仪;并利用以前所学的知识寻找理论上的依据,说明这个仪器的制作原理。

  设计目的:用生活中的实例感知。以最近大事作引入点,以最常见的事物为载体,让学生感受到生活中处处都有数学,认识到数学的价值。其中设计制作角平分仪,可培养学生的创造力和成就感以及学习数学的兴趣。使学生很轻松的完成活动二。

  (活动二)通过上述探究,能否总结出尺规作已知角的平分线的一般方法.自己动手做做看.然后与同伴交流操作心得.

  分小组完成这项活动,教师可参与到学生活动中,及时发现问题,给予启发和指导,使讲评更具有针对性。

  讨论结果展示:教师根据学生的`叙述,利用多媒体课件演示作已知角的平分线的方法:

  已知:∠AOB.

  求作:∠AOB的平分线.

  作法:

  (1)以O为圆心,适当长为半径作弧,分别交OA、OB于M、N.

  (2)分别以M、N为圆心,大于1/2MN的长为半径作弧.两弧在∠AOB内部交于点C.

  (3)作射线OC,射线OC即为所求.

  设计目的:使学生能更直观地理解画法,提高学习数学的兴趣。

  议一议:

  1.在上面作法的第二步中,去掉“大于MN的长”这个条件行吗?

  2.第二步中所作的两弧交点一定在∠AOB的内部吗?

  设计这两个问题的目的在于加深对角的平分线的作法的理解,培养数学严密性的良好学习习惯。

  学生讨论结果总结:

  1.去掉“大于MN的长”这个条件,所作的两弧可能没有交点,所以就找不到角的平分线.

  2.若分别以M、N为圆心,大于MN的长为半径画两弧,两弧的交点可能在∠AOB的内部,也可能在∠AOB的外部,而我们要找的是∠AOB内部的交点,否则两弧交点与顶点连线得到的射线就不是∠AOB的平分线了.

  3.角的平分线是一条射线.它不是线段,也不是直线,所以第二步中的两个限制缺一不可.

  4.这种作法的可行性可以通过全等三角形来证明.

  (活动三)探角平分线的性质

  思考:已知一角及其角平分线添加辅助线构成全等三角形;构成全等的直角三角形。这样的三角形有多少对?

  这样设计的目的是加深对全等的认识

3、《角的平分线的性质》一等奖说课稿

  今天,我说课的题目是《角的平分线的性质》第一课时,下面,我从教材分析、教学内容、教学目标、学情分析、教法与学法、教学过程的设计等六个方面对我的教学设计加以说明.

  一、教材分析

  本节课选自新人教版教材《数学》八年级上册第十一章第三节,是在七年级学习了角平分线的概念和前面刚学完证明直角三角形全等的基础上进行教学的.角平分线的性质为证明线段或角相等开辟了新的途径,简化了证明过程,同时也是全等三角形知识的延续,又为后面角平分线的判定定理的学习奠定了基础.因此,本节内容在数学知识体系中起到了承上启下的作用.同时教材的安排由浅入深、由易到难、知识结构合理,符合学生的心理特点和认知规律.

  二.教学内容

  本节课的教学内容包括角的平分线的作法、角的平分线的性质及初步应用.

  内容解析:

  教材通过充分利用现实生活中的实物原型,培养学生在实际问题中建立数学模型的能力.作角的平分线是几何作图中的基本作图.角的平分线的性质是全等三角形知识的延续,也是今后证明两个角相等或证明两条线段相等的重要依据.因此,本节内容在数学知识体系中起到了承上启下的作用.

  三、教学目标

  1、基本知识:了解尺规作图的原理及角的平分线的性质.

  2、基本技能

  (1)会用尺规作图作角的平分线。

  (2)会利用全等三角形证明角平分线的性质。

  (3)能运用角的平分线性质定理解决简单的几何问题

  3、数学思想方法:从特殊到一般

  4、基本活动经验:体验从操作、测量、猜想、验证的过程,获得验证几何命题正确性的一般过程的活动经验

  目标解析:

  通过让学生经历动手操作,合作交流,自主探究等过程,培养学生用数学知识解决问题的能力和数学建模能力了解角的平分线的性质在生产,生活中的应用培养学生探究问题的兴趣,增强解决问题的信心,获得解决问题的成功体验,激发学生应用数学的热情.

  四、学情分析

  刚进入初二的学生观察、操作、猜想能力较强,但归纳、运用数学意识的思想比较薄弱,思维的广阔性、敏捷性、灵活性比较欠缺,需要在课堂教学中进一步加强引导.根据学生的认知特点和接受水平,我把第一课时的教学重点定为:掌握角平分线的尺规作图,理解角的平分线的性质并能初步运用,难点是角平分线的性质的探究

  教学难点突破方法:

  (1)利用多媒体动态显示角平分线性质的本质内容,在学生脑海中加深印象,从而对性质定理正确使用;(2)通过对比教学让学生选择简单的.方法解决问题;(3)通过多媒体创设具有启发性的问题情境,使学生在积极的思维状态中进行学习.

  五、教法和学法

  本节课我坚持“教与学、知识与能力的辩证统一”和“使每个学生都得到充分发展”的原则,采用引导式探索发现法、主动式探究法、讲授教学法,引导学生自主学习、合作学习和探究学习,指导学生“动手操作,合作交流,自主探究”.鼓励学生多思、多说、多练,坚持师生间的多向交流,努力做到教法、学法的最优组合.

  教学辅助手段:根据本节课的实际教学需要,我选择多媒体PPT课件,几何画板软件教学,将有关教学内容用动态的方式展示出来,让学生能够进行直观地观察,并留下清晰的印象,从而发现变化之中的不变.这样,吸引了学生的注意力,激发了学生学习数学的兴趣,有利于学生对知识点的理解和掌握.

  六.教学过程的设计

  活动1.创设情景

  [教学内容1]

  生活中有很多数学问题:

  小明家居住在一栋居民楼的一楼,刚好位于一条暖气和天然气管道所成角的平分线上的P点,要从P点建两条管道,分别与暖气管道和天然气管道相连.

  问题1:怎样修建管道最短?

  问题2:新修的两条管道长度有什么关系,画来看一看.

  [整合点1]利用多媒体渲染气氛,激发情感.

  教师利用多媒体展示,引领学生进入实际问题情景中,利用信息技术既生动展示问题,同时又通过图片让学生身临其境般感受生活。学生动手画图,猜测并说出观察到的结论.引导学生了解角的平分线有很多未知的性质需我们来解开,并板书课题.

  [设计意图]依据新课程理念,教师要创造性地使用教材,作为本课的第一个引例,从学生的生活出发,激发学生的学习兴趣,培养学生运用数学知识,解决实际问题的意识,复习了点到直线的距离这一概念,为后续的学习作好知识上的储备.

  活动2.探究体验

  [教学内容2]

  要研究角的平分线的性质我们必须会画角的平分线,工人师傅常用如图所示的简易平分角的仪器来画角的平分线.出示仪器模型,介绍仪器特点(有两对边相等),将A点放在角的顶点处,AB和AD沿角的两边放下,过AC画一条射线AE,AE即为∠BAD的平分线.

  教师继续引导,用多媒体展示实验过程,学生口述,用三角形全等的方法证明AE是∠BAD的平分线.

  [设计意图]帮助学生体验从生产生活中分离,抽象出数学模型,并主动运用所学知识来解决问题.

  从上面的探究中可以得到作已知角的平分线的方法.

  [教学内容3]

  把简易平分角的仪器放在角的两边时,平分角的仪器两边相等,从几何作图角度怎么画?BC=DC,从几何作图角度怎么画?

  教师提问,学生分组交流,归纳角的平分线的作法,口述证明角平分线的过程.

  [设计意图]根据画图过程,从实验操作中获得启示,明确几何作图的基本思路和方法,师生交流并归纳.

  教师先在黑板上示范作图,再利用多媒体演示作图过程及画法,加深印象,并强调尺规作图的规范性.

  利用三角形全等证明角平分线,进一步明确命题的题设与结论,熟悉几何证明过程.

  [教学内容4]

  作一个平角∠AOB的平分线OC,反向延长OC得到直线CD,请学生说出直线CD与AB的位置关系.并在此基础上再作出一个45的角.

  学生独立作图思考,发现直线AB与CD垂直.

  [设计意图]通过作特殊角的平分线,让学生掌握过直线上一点作已知直线的垂线及特殊角的方法,达到培养学生的发散思维的目的.

4、线段的垂直平分线的性质教案一等奖

  13.1.2 线段的垂直平分线的性质第1课时 线段的垂直平分线的性质和判定

  1

  1.掌握线段垂直平分线的性质.(重点)

  2.探索并总结出线段垂直平分线的性质,能运用其性质解答简单的问题.(难点)

  一、情境导入

  如图所示,有一块三角形田地,AB=AC=10m,作AB的垂直平分线ED交AC于D,交AB于E,量得△BDC的周长为17m,你能帮测量人员计算BC的长吗?

  二、合作探究

  探究点一:线段垂直平分线的性质

  【类型一】 应用线段垂直平分线的性质求线段的长

  如图,在△ABC中,AB=AC=20cm,DE垂直平分AB,垂足为E,交AC于D,若△DBC的周长为35cm,则BC的长为( )

  A.5cm

  B.10cm

  C.15cm

  D.17.5cm

  解析:∵△DBC的周长=BC+BD+CD=35cm,又∵DE垂直平分AB,∴AD=BD,故BC+AD+CD=35cm.∵AC=AD+DC=20cm,∴BC=35-20=15cm.故选C.

  方法总结:利用线段垂直平分线的性质,可以实现线段之间的相互转化,从而求出未知线段的长.

  【类型二】 线段垂直平分线的性质与全等三角形的综合运用

  如图,在四边形ABCD中,AD∥BC,E为CD的中点,连接AE、BE,BE⊥AE,延长AE交BC的延长线于点F.

  求证:(1)FC=AD;(2)AB=BC+AD.

  解析:(1)根据AD∥BC可知∠ADC=∠ECF,再根据E是CD的中点可求出△ADE≌△FCE,根据全等三角形的性质即可解答.(2)根据线段垂直平分线的性质判断出AB=BF即可.

  证明:(1)∵AD∥BC,∴∠ADC=∠ECF.∵E是CD的中点,∴DE=EC.又∵∠AED=∠CEF,∴△ADE≌△FCE,∴FC=AD.

  (2)∵△ADE≌△FCE,∴AE=EF,AD=CF.∵BE⊥AE,∴BE是线段AF的垂直平分线,∴AB=BF=BC+CF.∵AD=CF,∴AB=BC+AD.

  方法总结:此题主要考查线段的垂直平分线的性质等几何知识.线段垂直平分线上的点到线段两个端点的距离相等,利用它可以证明线段相等.

  【类型三】 线段垂直平分线与角平分线的.综合运用

  如图,在四边形ADBC中,AB与CD互相垂直平分,垂足为点O.

  (1)找出图中相等的线段;

  (2)OE,OF分别是点O到∠CAD两边的垂线段,试说明它们的大小有什么关系.

  解析:(1)由垂直平分线的性质可得出相等的线段;

  (2)由条件可证明△AOC≌△AOD,可得AO平分∠DAC,根据角平分线的性质可得OE=OF.

  解:(1)∵AB、CD互相垂直平分,∴OC=OD,AO=OB,且AC=BC=AD=BD;

  (2)OE=OF,理由如下:在△AOC和△AOD中,∵∴△AOC≌△AOD(SSS),∴∠CAO=∠DAO.又∵OE⊥AC,OF⊥AD,∴OE=OF.

  方法总结:本题是线段垂直平分线的性质和角平分线的性质的综合,掌握它们的适用条件和表示方法是解题的关键.

  探究点二:线段垂直平分线的判定

  如图所示,在△ABC中,AD平分∠BAC,DE⊥AB于点E,DF⊥AC于点F,试说明AD与EF的关系.

  解析:先利用角平分线的性质得出DE=DF,再证△AED≌△AFD,易证AD垂直平分EF.

  解:AD垂直平分EF.∵AD平分∠BAC,DE⊥AB,DF⊥AC,∴∠EAD=∠FAD,DE=DF.在△ADE和△ADF中,∵∴△ADE≌△ADF,∴AE=AF,∴A、D均在线段EF的垂直平分线上,即直线AD垂直平分线段EF.

  方法总结:当一条直线上有两点都在同一线段的垂直平分线上时,这条直线就是该线段的垂直平分线,解题时常需利用此性质进行线段相等关系的转化.三、板书设计

  线段的垂直平分线

  1.线段的垂直平分线的作法.

  2.线段的垂直平分线性质定理和逆定理.

  3.三角形三边的垂直平分线交于一点.

  本节课由于采用了直观操作以及讨论交流等教学方法,从而有效地增强了学生的感性认识,提高了学生对新知识的理解与感悟,因此本节课的教学效果较好,学生对所学的新知识掌握较好,达到了教学的目的.不足之处是少数学生对线段垂直平分线性质定理的逆定理理解不透彻,还需在今后的教学和作业中进一步进行巩固和提高.

5、三角形的角平分线

  教学目标:

  1、理解三角形的内外角平分线定理;

  2、会证明三角形的内外角平分线定理;

  3、通过对定理的证明,学习几何证明方法和作辅助线的方法;

  4、培养逻辑思维能力。

  教学重点:

  1、几何证明中的证法分析;

  2、添加辅助线的方法。

  教学难点:

  如何添加有用的辅助线。

  教学关键:

  抓住相似三角形的判定和性质进行教学。

  教学方法:

  “四段式”教学法,即读、议、讲、练。

  一、阅读课本,注意问题

  1、复习旧知识,回答下列问题

  ①在等腰三角形中,怎样从等边得出等角?又怎样从等角得出等边?请画图说明。

  ②辅助线的作法中,除了过两个点连接一条线段外,最常见的就是过某个已知点作某条已知直线的平行线。平行线有哪些性质?

  ③怎样判断两个三角形是相似的?相似三角形最基本的性质是什么?

  ④几何证明中怎样构造有用的相似三角形?

  2、阅读课本,弄清楚教材的内容,并注意教材上是怎样讲的。

  提示:课本上在这一节讲了三角形的内外角平分线定理,每个定理各讲了一种证明方法。为了叙述定理的需要,课本上还讲了线段的内分点和外分点两个概念。最后用一个例题来说明怎样运用三角形的内外角平分线定理。阅读时要注意课本上有关问题的叙述、分析以及作辅助线的方法。通过适当的联想和猜测,找出一些课本上尚未出现的新的证明方法。

  3、注意下列问题:

  ⑴如图,等腰中,顶角的平分线交底边于,那么,图中出现的相等线段是xxx即xxx。通过比较得到。

  ⑵如果上面问题中的换成任意三角形,即右图的,平分,交于,那么,是不是还成立?请同学们用刻度尺量一量线段的长度,计算,然后再比较(小的误差忽略不计)。

  ⑶三角形的内角平分线定理说的是什么意思?课本上是怎样写已知、求证的?

  ⑷课本上是怎样进行分析、证明的?都用了哪些学过的知识?证明的根据是什么?

  ⑸课本上证明的过程中是怎样作辅助线的?这样作辅助线的目的是什么?

  ⑹过、、三点能不能作出有用的辅助线?如果能,辅助线应该怎样作?各能作出几条?

  ⑺就作出的辅助线,怎样寻找证明的思路和方法?分析的过程中用到了哪些知识?

  ⑻你能不能类似地叙述三角形的外角平分线定理?

  ⑼回答练习中的第一题。

  ⑽总结证明方法和作辅助线的方法。

  ⑾注意内分点和外分点两个概念及其应用。

  4、阅读指导丛书《平面几何》第二册。

  ⑴注意辅助线中平行线的作法,通过对图、、的观察分析,找出解决问题的证明方法。

  ⑵丛书利用正弦定理中的面积公式来证明三角形的内角平分线定理,既把有关的知识联系起来、拓展了解题思路,又为我们提供了一种比较简单的解决问题的方法,值得我们借鉴。要注意三角形面积的几种不同的计算方法。

  二、互相讨论,解答疑点

  1、上面提出的问题,希望大家独立思考、独立完成。根据已有的思路和线索,参照课本上的`方法进行分析。

  2、思考中实在是有困难的同学,可以和周围的同学互相讨论,发表看法;也可以请老师帮助、提示或指点。

  3、把同学之间讨论的结果,整理成一个完整的证明过程,写出每一步证明的根据。最后,适当地总结一些解题的经验和方法。

  三、讲评纠正,整理内容

  1、把学生讨论的结果归纳出来,加以补充说明,纠正错误后进行适当的分类总结,点明证题法中的要点。

  ①证明比例式的依据是平行截割定理的推论,因此,我们作的辅助线都是平行线。

  ②从上述几种证明方法可以看出,证明的关键在于通过作辅助线把某些线段“移动”到适当的位置,以便根据平行截割定理的推论得出所要的结论。

  ③辅助平行线的作法,只能是过xxx三点分别作不过、三点的边(线段)的平行线,和另一条边(线段)的延长线相交,构成一个等腰三角形,达到“移动”的目的。

  2、整理教学内容

  ⑴线段的内分点和外分点

  (ⅰ)定义:

  ①在线段上,把线段分成两条线段的点叫做这条线段的内分点。

  ②在线段的延长线上的点叫做这条线段的外分点。

  (ⅱ)举例

  点在线段上,把线段分成了和两条线段,所以,点是线段的内分点,线段和叫做点内分线段所得的两条线段。

  点在线段的延长线上,和、两个端点构成了、两条线段,所以,点是线段的外分点,线段和叫做点外分线段所得的两条线段。

  (ⅲ)条件

  ①内分点的条件:a)在已知线段上;

  b)把已知线段分成另外两条线段。

  ②外分点a)在已知线段的延长线上;

  b)和已知线段的两端点构成另外的两条线段。

  (ⅳ)特殊情况

  a)线段的中点是不是线段的内分点?内分点是不是线段的中点?

  b)线段的黄金分割点是不是线段的内分点?内分点是不是线段的黄金分割点?

  c)一条已知线段有几个中点?有几个黄金分割点?有几个内分点?几个外分点?

  (ⅰ)定理:三角形的内角平分线分对边所得的两条线段与夹这个角的两边对应成比例。

  (ⅱ)已知:中,平分,交于。

  求证:xxx。

  (ⅲ)简单分析

  从结论来考虑,横着看,两个比的前项、在中,两个比的后项、在中。按照相似三角形的性质,只要∽,那么,结论就是成立的。但是,与不是一对相似三角形,所以,不可能用相似三角形来证明。竖着看,有和,事实上,不成一个三角形。若是从“平行线分两条线段所得的线段对应成比例”(平行截割定理的推论)来考虑,显然,图中也没有平行线。因此,要想得到结论,只有把其中的某条线段进行适当的移动,使其构成相似三角形的对应边,或者成为两条直线上被平行线截得的对应线段。这样,我们就确定了辅助线的作法以平行线为主。

  例如,把线段绕着它的端点旋转适当的角度到图中的位置(即的延长线)。由于旋转不改变线段的长度,所以,从旋转情况可得。由于平分,所以,连接后可以证明。因此,实际证明时,一般都叙述为“过点作交的延长线于”。不管是哪种说法,其结果都是一样的。类似地,我们还可以把线段绕着它的端点旋转适当的角度到端点落在线段的延长线上,同样也可以证明。

  (ⅳ)证法提要

  ①证法一:如上图,过点作交的延长线于,可以得到:a)(为什么?);b)(为什么?)。通过等量代换便可以得到结论。同样,过点作的平行线和边的延长线相交,也可以证得结论,证明的方法是完全一样的。

  ②证法二:如右图,过点作交的延长线于,可以得到:a)(为什么?);b)(为什么?)。通过等量代换便可以得到所要的结论。同样,过点作的平行线和的延长线相交,也可以得到结论,证明的方法是完全一样的。

  ③证法三:如右图,过点作交于,可以得到:a)(为什么?);b)(为什么?);c)。通过等量代换便可以得到所要的结论。同样,过点作的平行线和相交,也可以得到结论,证明的方法是完全一样的。

  ④证法四:如下页图,过点作交于,根据三角形的面积公式可得:xxx

  又根据正弦定理的面积公式有:

  通过比较就可以得到:所要的结论。

  (ⅰ)定理:三角形的外角平分线外分对边所得的两条线段与夹这个角的两边对应成比例。

  (ⅱ)已知:中,是的一个外角,平分,交的延长线于。

  求证:xxx。

  (ⅲ)简单分析:(类同内角平分线定理的分析方法)

  (ⅳ)证法提要;(类同内角平分线定理的分析方法)

  四、小结全节,练习巩固

  1、小结

  ⑴两个定理

  (ⅰ)三角形的内角平分线定理

  (ⅱ)三角形的外角平分线定理

  ⑵证明方法

  分为四大类共七种方法。

  2、练习

  ⑴教材,2、3两题。

  ⑵补充题:

  ①画任意一个三角形的某个角的内外角平分线,说明内外角平分线之间的关系,证明你的结论。

  ②画等腰三角形的外角平分线,说明外角平分线和底边之间的关系,证明你的结论。

  3、作业

  教材,17、18两题。

6、七年级数学下册《平行线的性质》教案一等奖

  【教学目标】

  1.经历从性质公理推出性质的过程;

  2.感受原命题与逆命题,从而了解平行线的性质公理与判定公理的区别,能在推理过程正确使用.

  【对话探索设计】

  〖探索1反过来也成立吗

  过去我们学过:如果两个数的和为0,这两个数互为相反数.反过来,如果两个数互为相反数,那么这两个数的和为0.显然,这两个句子都是正确的.

  现在换一个例子:如果一个整数个位上的数字是5,那么它一定能够被5整除.对吗?这句话反过来怎么说?对不对?

  结论:如果一个句子是正确的,反过来说(因果对调),就未必正确.

  〖探索2

  上一节课,我们学过:同位角相等,两直线平行.反过来怎么说?猜一猜:它还是对的吗?

  〖探索3

  (1)用三角尺画两条平行线a、b.说一说:不利用第三条直线能画出两条平行线吗?请画出第三条直线(把它记为c),并说明判定这两条直线平行的根据(公理或定理);

  (2)在(1)中再画一条直线d与直线a、b都相交,找出其中的.一对同位角,用量角器量出它们的度数验证你原来的猜测.

  结论:两条平行线被第三条直线所截,同位角相等.

  与平行线的判定公理一样,这个结论也是基本事实,即人们在长期实践中总结出来的结论,我们把它叫做平行线的性质公理,它是平行线的第一条性质.

  〖探索4

  如图,请画直线c截两条平行线a、b;再在图中找出一对内错角.同学们一定能从直觉判断这对内错角也是相等的.也就是说:

  两条平行线被第三条直线所截,内错角相等.它是平行线的第二条性质.

  现在我们来试一试:如何根据性质1说出性质2成立的道理.

  如图,

  ∵a∥b(已知),

  ∴∠1=∠3(____________________).

  又∠3=________(对顶角相等),

  ∴∠1=∠2(___________).

  以上过程说明了:由性质1可以得出性质2.

  〖探索5

  我们学过判定两直线平行的第三种方法:

  两条直线被第三条直线所截,如果同旁内角互补,那么这两条直线平行.(简单地说:同旁内角互补,两直线平行.)

  把这条定理反过来,可以简单说成_____________________.

  猜一猜:把这条定理反过来以后,还成立吗?

  〖练习

  P22练习

  说一说:求这三个角的度数分别根据平行线的哪一条性质?

  〖作业

  P25.1、2、3

  〖补充作业

  如图:直线a、b被直线c所截,

  (1)若a∥b,可以得到∠1=∠2.根据什么?

  (2)若∠1=∠2,可以得到a∥b.根据什么?

  (注意:(1)、(2)的根据一样吗?)

7、《平分生命》教案一等奖

  教材简析:

  本文是苏教版的一篇课文,记叙了一个年仅10岁的男孩当得知与自己相依为命的妹妹急需输血而医院却缺少血液时,勇敢地献出了自己的鲜血并要与妹妹平分生命的感人故事,赞扬了男孩的勇敢,表达了浓浓的兄妹亲情。

  教学目标:

  1、 认识“惟、液、抽、瞬、渗、挽”6个生字,会写“依、惟、降、液、抽、颤、抖、挽、郑”9个字。

  2、 读懂课文,理解“相依为命、承受、犹豫、颤抖、郑重其事”等词语的含义。

  3、 感悟课文,仔细体会男孩的勇敢,感受兄妹的亲情,激发学生对亲情的向往。

  4、 找出文中描写男孩神态、动作、语言的句子,反复朗读,体会这些句子在表达文章中心时的作用。

  教学重点:

  本文的教学重点应放在品读描写男孩神态、动作、语言的.句子上。

  教学难点:

  难点应放在学习语言的过程中,使学生产生对亲情的向往。

  教学准备:

  1、 教师准备:制作课件,反复朗读课文,透彻理解文章脉络,深层次体会文章情感。

  2、 学生准备:初读课文几遍,搜集家庭成员的基本情况。

  教学过程:

  一、理解词语,导入新课

  1、师问:同学们,你们知道“平分”这个词的意识吗?你认为世界上哪些东西可以平分呢?

  2、同学们思考,并讲一讲自己的看法。

  师导入:是啊!苹果可以和亲人平分吃,金钱可以和亲人平分用,那人的生命能不能和亲人平分呢?学生回答:不能。师继续导入:可有一个男孩,他要和他的妹妹平分生命,下面,我们就一起去读一读。板书:平分生命

  二、初读课文,理解内容

  1、学生初读课文,思考:你读懂了什么、还有什么疑问?

  2、学生回答读懂的内容,根据三年级学生的认知水平,他们可能对课文的大意、小男孩的勇敢都有一个大致的了解。学生可能会提出:小男孩为什么开始输血时犹豫、后又为什么点点头等关于男孩的一系列神态、动作和语言。

  3、 师强调:要弄懂同学们提的问题,首先必须读准生字,读顺句子。

  4、 教师检查学生对生字的认读情况,对“挽、瞬”等几个难写的字,老师指导书写。

  三、自主学习,初步感悟。

  1、学生再读课文,划出描写男孩神态、动作、语言的句子,并好好读一读。

  1、 全班交流,教师适当点拨

  男孩:犹豫?点头?微笑?颤抖?转圈?

  3、小组围绕问题讨论学习。

  四、精读课文,情感升华。

  1、全班交流,教师重点引导

  “犹豫”是因为男孩认为抽血就是抽掉自己的生命。

  “点头”是因为小男孩已有了为亲人献出生命的决心。

  “微笑”是想给妹妹最大的安慰。

  “颤抖”是他认为他就要死了。

  “转圈”是因为得知了输血不会死,他又可以和妹妹“各活50年了”。

  2、理解“震撼”一词的意识,体会医生的内心活动。

  3、结合“语文天地”中的D3体会“一瞬间、一眨眼、一刹那”等表示时间的词语,从“一瞬间”感受小男孩决心为妹妹献出生命的迅速;结合D4让学生在反复朗读中体会两个句子表达方式的不同,表达的感情就不一样。

  4、找出小男孩的语言,小组内分角色练读,要求:读出男孩当时的心情,读出医生充满爱心的语气。

  5、分角色朗读,教师扮演医生,一好学生扮演小男孩展示读,然后让小组上台展示。

  五、知识整理,适度拓展

  1、看课件,说说小男孩的感人故事。

  2、结合“语文天地”中的G,制作“家庭小档案”,领悟亲情的重要。

  点评与建议:

  “读”是语文课的主要特征,这篇感人的故事更需要学生反复品读,否则,感人也只能是口头上的词语。为了让学生读透内容,读出情感,笔者建议从以下几个方面努力

  1、读的形式一定要多样。初读、精读、全文读、重点段落读、自由读、小组读、分角色读,用多种方式让学生百读不厌;

  2、读的方法一定要指导。虽然我们不提倡讲朗读的理论知识,但基本的朗读技巧要教给学生,如把自己当男孩读,让学生回忆自己生活中类似的情况后读等;

  3、读的评价一定要实在。对读的评价不能只是单一的“不错”、“可以”、“还行”等不着边际的词语,而要真实的能激发学生再次朗读的欲望、又能提高朗读水平的朗读评价,比如:听了你的朗读,老师的心灵有所震撼,但还不够,如果你能把你的朗读表情传达给我,我受的震撼可能更深一些,再试一遍。

8、《平分生命》教学设计一等奖

  一、导入新课:

  1、上节课,由奶奶送给“我”的小鸡中让我们知道了生命的重要,今天老师也给大家来了一个与生命有关的故事,你们想听吗?

  2、放音乐讲故事。

  3、故事后来发展是怎样的呢?让我们一起来学习课文。

  二、初读课文

  1、自由读课文。

  要求:

  ①读准字音。

  ②不明白地方画下来。

  三、检查自读情况

  1、(课件出示)本课的生词 血液 抽血 颤抖 惟一 渗出 一瞬间 挽起 (1)自由读生词 (2)开火车读生词 (3)齐读生词

  2、学生质疑

  三、学习课文

  1、指名读课文,思考:男孩子给你留下了怎样的印象?

  2、默读课文,画出表现男孩勇敢的句子,想想为什么?

  3、小组讨论。

  4、集体交流,引导学生找出描写男孩神态、动作、语言的,体会男孩的勇敢,感受兄妹深情。

  (1)抽血时,男孩安静地不发出一丝声响,只是向邻床上的妹妹微笑。 (男孩不想让妹妹为自己紧张、担心,所以抽血时,男孩很安静,并微笑着,安慰邻床上的妹妹。)

  (2)当抽血完毕后,男孩立刻停止了微笑,躺在床上一动不动,声音地问:“医生叔叔,我还能活多久?” (“立刻停止”“一动不动”“颤抖”从这些词中此时男孩心里非常害怕,认为自己就要死了。) 指名朗读

  (3)医生被男孩的勇敢震撼了:这个男孩只有呀!他以为输血就会失去生命,当他决定给妹妹输血的那一瞬间,他一定是下了,这是多么大的勇气啊! (医生没有想到一个十岁的孩子以为输血就会死,但为了救自己的妹妹他却下定死亡的决心。他被男孩的这种做法打动了。)

  A、理解“震撼”的意思。

  B、结合课文体会“震撼”的意思。

  C、指导朗读。

  当男孩从医生嘴中得知自己不会死,还能活到100岁时,他又是怎样的呢? (4)男孩从床上跳到地上,高兴得又蹦又跳,他在地上转了几个圈,确认真的没事,就又一次伸出胳膊,挽起袖子,昂起头,郑重其事地对医生说:“请您把我的血抽一半给妹妹吧,我们俩各活50年!”

  A、你认为应该用怎样的语气来读这段话。

  B、理解“郑重其事”的意思。(联系说话的语气理解)

  C、出示插图,看图理解“郑重其事”的意思。(观察男孩的表情)

  d、同桌互读这段话,互评。

  E、指名读。

  F、齐读。

  四、教师根据板书进行总结

  五、布置作业:

  1、有感情地朗读课文

  2、摘抄课文中最令自己感动的句子,并谈谈体会。