《圆柱的表面积》课堂教学反思
我要投稿投诉建议《圆柱的表面积》课堂教学反思
根据学校安排,上了《圆柱的表面积》这节课。虽然比较顺利的完成了课堂教学,基本能达成教学目标任务,学生的学习效果也不错。但细细想来,也有不少需要改进的地方。
1、课件的制作还需要修改。在巩固练习侧面积的计算中的第一题,圆柱的底面周长是18厘米,高是10厘米,求侧面积是没问题,但到了接下来的.求表面积时,18除以3。14、再除以2,就得不到整数,给学生的计算带来麻烦,是自己备课不精细,考虑不全面造成的,需要修改,改成18。84厘米。
2、在讲完例四后,安排的练习中,本来设计一组三个练习题,一个像例四,要求表面积但只需求一个底面与侧面积之和;一个是求表面积,但是需要侧面积与两个底面积之和;另一个是求烟囱的面积——即只需求侧面积。是让学生明白,解决实际问题时,虽说要求圆柱的表面积,但要根据具体情况具体分析,不能死套公式。
3、课堂总结时,应放给学生自己总结本节的的学习收获,不要老师代劳。
下一次上课,尽量注意以上几个问题,争取更好一点。
教学《圆柱的表面积》重点在于通过圆柱的侧面展开图推导出圆柱的侧面积计算公式,难点是灵活运用侧面积、表面积的有关知识解决实际问题。在本节课的教学中,我从始至终贯穿着“以学生为主体,教师为主导,思维训练为主线”的原则,筛选了圆柱表面积的计算方法和灵活应用为关键要素,搭建了多向度、多角度的学生合作平台,让学生在玩中学,学中玩,以游戏闯关的形式愉悦地完成本课教学。课下回顾整节课的教学同时又和同年组的老师进行了交流,反思如下:
一、激情导课,激发学生的学习能动性。
复习开始前,我问“同学们,老师今天把你们刚认识的新朋友带来了,你们猜,他是谁?”就在学生们的猜测下,我拿出了课前藏好的圆柱。我继续发问“你们认识它吗,是怎样认识的?你们还想知道它的什么?”由此展开圆柱的表面展开图。复习引入——提出长方体、正方体的表面积,导出圆柱的表面积的意义。
二、探究新知,搭建平台经历知识形成的过程。
本课教学分为三部分:第一部分是教学圆柱表面积的概念和侧面积的计算。探究新知时,让学生动手操作、观察、发现,通过小组的讨论、交流,呈现出不同圆柱的侧面展开图体现多向度、多角度的合作平台,从而进一步明确圆柱侧面沿高打开是长方形,长方形的长相当于圆柱的底面周长,宽相当于圆柱的高。由此导出圆柱的侧面积的计算方法。在学生学会计算圆柱的侧面积以后,设疑:你会计算这圆柱的表面积吗?(第二部分开始)学生在充分练习铺垫的基础上,合理自然地就计算出了圆柱的表面积。在练习表面积的实际应用时,又很自然地进行了“进一法”的教学。最后一部分是练习阶段,以生活中的圆柱物体为例求出所需要的材料,要求学生说出要计算哪几个面,体现了“数学来源于生活,数学应用于生活”的思想。
三、把握重、难点,创造性的使用教材和教学资源。
“圆柱表面积”这节课教学内容主要包括:圆柱的侧面积、表面积的计算,以及用“进一法”取近似值。教材安排了三道例题,但在教学中,我将侧面积计算方法的推导作为教学难点来突破,将表面积的计算作为重点来教学,将用“进一法”取似值作为一个知识点。在突破侧面积的计算方法这个难点时,精心设疑:圆柱的侧面是个曲面,怎样计算它的面积呢?让学生以小组为单位,用圆柱形纸筒进行实际操作,最后探究出侧面积的计算方法。在学生学会计算圆柱的底面积和侧面积以后,设疑:你会计算这圆柱的表面积吗?学生在充分练习铺垫的基础上,合理自然地就计算出了圆柱的表面积。在练习表面积的实际应用时又体现了数学与生活的联系。
四、教学方法:
直观演示和实践操作相结合,呈现梯度形态。在侧面积和表面积的计算环节中,我首先让学生摸一摸,自己观察、发现,形成圆柱表面积的表象。认识到圆柱的表面积等于圆柱的侧面积和两个底面面积之和。教学侧面积的计算方法时,让学生以小组为单位,通过观察、操作推导出侧面积的计算方法。调集多种要素让学生亲身实践了,记忆一定就会更加深刻。这样充分利用了学生现有的学具和准备的圆柱体实物,让学生自己去动手、观察,推导出了圆柱的表面积和侧面积的计算公式,并运用幻灯片辅助教学,有利于学生对知识的理解及掌握。
当然,在这节课的教学中,还存在着一些不足:
首先,实践操作展示得不够。在动手探索圆柱侧面积的计算方法时,小部分同学的学具较小,展示时没有达到预期的效果。。
其次,学生的计算能力有待加强,在计算圆柱的侧面积和表面积时显得费时费力。
在以后的教学中,我还应该多吸取经验,弥补自己的不足,提升自己的.教学能力。
教学内容:
九年义务教育六年制小学数学第十二册P21-P22中的例2、例3,完成相应的练一练和练习六第1、2题
教学目标:
1.使学生理解圆柱侧面积和圆柱表面积的含义,掌握圆柱侧面积和表面积的计算方法.
2.进一步培养学生观察、分析和推理等思维能力,发展学生的空间观念。
3.让学生进一步增强数学在生活中的体验,培养热爱数学、学好学生的兴趣。
教具准备:
圆柱形的物体,圆柱侧面的展开图
教学重点:
理解圆柱侧面积和圆柱表面积的含义,掌握圆柱侧面积和表面积的计算方法.
教学难点:
根据实际情况来计算圆柱的表面积。
教学过程:
一、复习
下面()图形旋转会形成圆柱。
二、认识侧面积的意义和计算方法。
1、出示一个圆柱形的罐头,罐头的侧面贴了一张商标纸。
问:你能想办法算出这张商标纸的面积吗?
⑴拿出圆柱形的罐头,量出相关数据,在小组中讨论。
⑵交流:你们是怎么算的?
沿高展开,得到一个长方形商标纸,量出它的长和宽,再算出它的面积。
⑶讨论:商标纸的面积就是圆柱中哪个面的面积?
观察一下,展开后的长方形商标纸的长与宽,与圆柱中的什么有关?有什么关系?
使学生认识到:长方形的长就是圆柱的底面周长,宽就是圆柱的高。
2、出示例1中的罐头。
⑴师:这个罐头的侧面也有一张商标纸,如果不展开,能算出这张商标纸的面积吗?测量什么数据较方便?
⑵出示数据:底面直径11厘米高:15厘米
⑶学生算出商标纸的面积。
⑷交流:你是怎么算的?先算什么?再算什么?
3、小结:算商标纸的面积,实际上就是算圆柱的侧面积。
追问:怎么算圆柱的侧面积?
圆柱的侧面积=底面周长×高
长方形的面积=长×宽.
4.发散提高:想一想,生活中还有哪些情况是求圆柱的侧面积?
5.独立完成“练一练”第1题
三、认识表面积的意义和计算方法。
1、出示例3中的圆柱。
⑴问:如果将这个圆柱的侧面展开,得到的长方形的长和宽分别是多少厘米?
⑵让学生算一算后交流。师板书:
长:3.14×2=6.28(厘米)宽:2厘米
⑶圆柱的两个底面的直径和半径分别是多少厘米?
板书:直径2厘米半径1厘米
2、引导画出圆柱的展开图。
⑴这个圆柱有几个面?分别是什么?
⑵如果要画出这个圆柱的展开图,要画哪几个图形?分别画多大?
⑶在书上方格纸上画出这个圆柱的展开图。
⑷交流:你是怎么画的?
3、认识圆柱的表面积。
⑴讨论:什么是圆柱的表面?怎么算圆柱的表面积?
板书:圆柱的表面积=底面圆的面积×2+圆柱侧面积
⑵算出这个圆柱的表面积。算后交流,提醒学生分步计算。
4、练习:完成“练一练”第2题。
⑴各自练习,并指名板演。
⑵对照板演,讨论:
这两题有什么不一样?知道底面圆的直径怎么求圆柱的底面积和圆柱的侧面积?知道圆的半径呢?
想一想:如果知道的是圆的周长呢?
四.总结反思
1.今天这节课你学到了哪些知识?有什么收获?还有哪些不清楚的问题?
2.生活中的圆柱体表面都是一个侧面加两个底面吗?哪些不是?又该怎样计算它们的表面积呢?
畅谈体会。
五、巩固应用
1.完成练习六第1题。
注意指导学生思考问题要求的是圆柱的哪个面。
2.完成练习六第2题。
先让学生说说用铁皮做油桶时,需要做圆柱的哪几个面?
教学反思:
本节课的教学,学生学习兴趣浓厚,学习积极主动,课堂上他们动手操作,认真观察,独立思考,互相讨论,合作交流,终于发现了知识,领悟了知识,品尝到了成功的喜悦,学生自始至终在自主学习中发展。
1.重视学习内容的生活性。数学来源于生活,生活中到处有数学。从学生的生活实际,创设数学问题,这是激发学生学习数学兴趣和调动学生积极参与的有效方法。在教学的环节中,我创设了“八宝粥罐头”的情景,从学生的已有知识出发,让学生边看边想边说,复习了圆的面积和圆柱的特征。在突破侧面积的计算方法这个难点时,精心设疑:老师要制作一个圆柱形教具,请你帮助选择合适的部件(两个半径是3厘米的圆和一些大小不同的长方形)。问题的提出使学生思维进入了积极的状态:选择哪一个长方形才会与两个圆围成圆柱呢,促使学生思考圆柱的侧面与底面的关系。让学生融入到学习氛围中来。第二环节中,让学生在熟悉的生活背景下,根据已掌握的数学知识大胆探索,培养了学生分析能力和创新意识。
2.重视学习主体的创造性。著名数学家、教育家波利亚指出:“学习任何知识的最佳途径是自己去发现。”因为这种发现理解最深,也最容易掌握其中的内在规律、性质、和联系。学生独立思考,相互讨论,辩论澄清的过程,就是自己发现或创造的过程。本节课中,首先以现实生活问题引入,根据学生原有的知识结构,从实际出发,给学生充分的思考时间,对“选择哪一个长方形才会与两个圆围成圆柱呢”进行独立探索、尝试、讨论、辩论,学生充分展示自己的思维过程,圆柱体的侧面积就推导出来了。
3.重视学习过程的实践性创建“生活课堂”,就要让学生在自然真实的主体活动中去“实践”数学、在实践中探索,在“实践”中发现。在实践中推出圆柱的侧面积的计算,从而得知圆的表面积的计算方法,使学生在学习知识的过程中学会学习,同时,情感上得到满足。实践使我们体会到,创建“生活课堂”应从学生的生活实际出发,关注学生的情感体验,调动学生的生活积累,帮助他们架设并构建新的平台,让学生发现数学问题,并激励学生在实践中探索解决问题的方法,从而提高学生整体素质,个性得以发展。
今天,看到了一份家庭作业,非常激动。昨天上课内容是《圆柱表面积》,课堂上让学生观察圆柱的表面,了解圆柱表面是由两个完全一样的圆(平面图形)和一个侧面(曲面)构成的,进而明白圆柱的表面积是什么。如何计算圆柱的表面积就很明了了,只要将侧面这个曲面转换成学过的平面图形,上下两个底都是圆,而圆面积计算已经学过了,一切都会很顺利的解决。所以,当我最后把圆柱的展开图画到黑板上的时候,学生很容易发现展开的长方形(侧面)的长就是底面圆的周长,宽就是圆柱的高。因为长方形的面积=长*宽,所以圆柱的侧面积=底面周长*高,字母表示就是S侧=2r*h。进而很容易得出:圆柱的表面积=圆面积*2+侧面积。用字母表示就是S=2*r2+2r*h,如果用乘法分配律提取公因数的话就可以得到S=2r*(r+h)。整节课就像我所预料的那样有条不紊的完成了教学任务。
但是,总觉得少了点什么。对,缺乏继续深入的思考。这个内容不应该就这样戛然而止,所以,我就布置了这样一份家庭作业:有兴趣的话,尝试用其他方法得出圆柱表面积计算公式?作业虽然布置下去了,但是也不抱多大希望。毕竟,有点难,学生也要准备小升初,愿意花时间去探究吗?
今天,这项作业收上来,不多,有一小半的同学交来了。大部分是因为想不出其他办法,而交来的这项作业中,有很多同学是把侧面展开成了平行四边形,仿照课堂上的方法推导的。
突然,一份令我激动的作业出现了,是那个平时最爱动脑的男孩子。他是用图来表达他的`想法的,思路非常清晰。能将曲面转化成平面的长方形,那么也能用原来学过的知识将圆也转化成近似的长方形,这样经过拼接,整个圆柱的表面展开图就可以拼成一个大的长方形,长方形的长是底面圆的周长,宽是圆柱的高+半径。
1.教学要引起学生的问题意识。
“问题是数学的心脏。”问题意识是一种探索意识,是创造的起点。学生有了问题,才会思考和探索,有探索才会有发展。所以我让学生去发现计算圆柱的表面积在课堂中和生活中的区别,使他们意识到课堂中的数学是经过提炼总结出来的。用数学知识解决问题,如算出茶叶筒至少需要多少平方厘米的铁皮,由此引起学生的认知冲突,调整原有的认知结构,促进探究向深层次推进。
2.教学要激发学生的过程意识。
数学学习的本质是“再创造”。数学的学习过程不是让学生被动的吸收教材和教师给出的现成结论,而是由一个学生亲自参与的、生动活泼的`、主动的和富有个性的过程。这节课围绕“制作一个圆柱”展开活动,探究的脉络清楚。学生经历了“实践——失败——总结——再实践——成功”的探究过程。如:学生在失败后说:“我们忽视了侧面与底面的关系,计算时我们都知道圆柱的底面周长就是侧面展开后长方形的长、正方形的边长或者平行四边形的底。但制作时就忘记了这些知识。”“学生在经历了失败才引起了思考,在对与错、应该与不应该的斗争中撞击智慧的火花,课堂的生命力由此显现。在总结之后的再一次实践中,学生的创新意识和创造能力体现出来了,这种情不自禁的创造来源于感悟和体验。只有经历了这样的感悟、体验的过程,才能得到能力的锤炼,智慧的升华。
《圆柱的表面积》教学,重点在于通过圆柱的侧面展开图推导出圆柱的侧面积计算公式,难点是灵活运用侧面积、表面积的有关知识解决实际问题。
在本节课的教学中,我从始至终贯穿着“以学生为主体,教师为主导,训练思维为主线”的原则,让学生在动手操作、合作探究中学习。将圆柱侧面积计算方法的推导作为教学难点来突破,将圆柱的表面积的计算作为重点来教学。
一、在复习引入环节,我首先通过复习圆的周长和面积的计算,为下面的计算圆柱的侧面积和表面积打下基础;复习圆柱的特征为后面侧面积和表面积的公式推导做好铺垫。
二、在侧面积和表面积的计算环节中,我首先让学生看一看、摸一摸,自己观察、发现,形成圆柱表面积的表象。认识到圆柱的表面积等于圆柱的侧面积和两个底面面积的和。然后,在突破侧面积的计算方法这个难点时,让学生自己展开圆柱体模型,观察到侧面展开是一个长方形。长方形的长就是圆柱的底面周长,长方形的宽就是圆柱的高,从而根据长方形的面积公式自然推导出了圆柱侧面积的.计算公式,在这一环节中,培养了学生的观察、分析能力,同时也培养了学生的合作意识。
三、在练习题的设计中,遵循了从易到难的原则,在形式、难度、灵活性上都有体现。判断题有利于学生对知识的理解;动手测量并计算圆柱体实物表面积的题目,锻炼了学生对知识的实际应用能力,使学生感受到数学与现实生活的联系。
四、在教学方法上,充分利用了学生现有的学具和准备的圆柱体实物,让学生自己去动手、观察,推导出了圆柱的表面积和侧面积的计算公式。
在这节课的教学中,还存在着一些不足:
1、实践操作展示得不够。在动手探索圆柱侧面积的计算方法时,大部分学生联系上节课的经验说出看法,而没有实际操作,我也没有让他们展示推导的过程,加深印象,只是让他们说一说,导致一部分学困生只能听听而已;
2、学生对圆周长和面积的计算不够熟练,所以,在计算圆柱的侧面积和表面积时显得费时费力;
3、部分学生对生活问题中的圆柱表面积(不是三个面的)理解上有欠缺。
根据学校安排,上了《圆柱的表面积》这节课。虽然比较顺利的完成了课堂教学,基本能达成教学目标任务,学生的学习效果也不错。但细细想来,也有不少需要改进的地方。
1、课件的制作还需要修改。在巩固练习侧面积的计算中的第一题,圆柱的底面周长是18厘米,高是10厘米,求侧面积是没问题,但到了接下来的.求表面积时,18除以3。14、再除以2,就得不到整数,给学生的计算带来麻烦,是自己备课不精细,考虑不全面造成的,需要修改,改成18。84厘米。
2、在讲完例四后,安排的练习中,本来设计一组三个练习题,一个像例四,要求表面积但只需求一个底面与侧面积之和;一个是求表面积,但是需要侧面积与两个底面积之和;另一个是求烟囱的面积——即只需求侧面积。是让学生明白,解决实际问题时,虽说要求圆柱的表面积,但要根据具体情况具体分析,不能死套公式。
3、课堂总结时,应放给学生自己总结本节的的学习收获,不要老师代劳。
下一次上课,尽量注意以上几个问题,争取更好一点。
篇一:《圆柱的表面积》教学反思
教学《圆柱的表面积》重点在于通过圆柱的侧面展开图推导出圆柱的侧面积计算公式,难点是灵活运用侧面积、表面积的有关知识解决实际问题。在本节课的教学中,我从始至终贯穿着“以学生为主体,教师为主导,思维训练为主线”的原则,筛选了圆柱表面积的计算方法和灵活应用为关键要素,搭建了多向度、多角度的学生合作平台,让学生在玩中学,学中玩,以游戏闯关的形式愉悦地完成本课教学。课下回顾整节课的教学同时又和同年组的老师进行了交流,反思如下:
一、激情导课,激发学生的学习能动性。
复习开始前,我问“同学们,老师今天把你们刚认识的新朋友带来了,你们猜,他是谁?”就在学生们的猜测下,我拿出了课前藏好的圆柱。我继续发问“你们认识它吗,是怎样认识的?你们还想知道它的什么?”由此展开圆柱的表面展开图。复习引入——提出长方体、正方体的表面积,导出圆柱的表面积的意义。
二、探究新知,搭建平台经历知识形成的过程。
本课教学分为三部分:第一部分是教学圆柱表面积的概念和侧面积的计算。探究新知时,让学生动手操作、观察、发现,通过小组的讨论、交流,呈现出不同圆柱的侧面展开图体现多向度、多角度的合作平台,从而进一步明确圆柱侧面沿高打开是长方形,长方形的长相当于圆柱的底面周长,宽相当于圆柱的高。由此导出圆柱的侧面积的计算方法。在学生学会计算圆柱的侧面积以后,设疑:你会计算这圆柱的表面积吗?(第二部分开始)学生在充分练习铺垫的基础上,合理自然地就计算出了圆柱的表面积。在练习表面积的实际应用时,又很自然地进行了“进一法”的教学。最后一部分是练习阶段,以生活中的圆柱物体为例求出所需要的材料,要求学生说出要计算哪几个面,体现了“数学来源于生活,数学应用于生活”的思想。
三、把握重、难点,创造性的使用教材和教学资源。
“圆柱表面积”这节课教学内容主要包括:圆柱的侧面积、表面积的计算,以及用“进一法”取近似值。教材安排了三道例题,但在教学中,我将侧面积计算方法的推导作为教学难点来突破,将表面积的计算作为重点来教学,将用“进一法”取似值作为一个知识点。在突破侧面积的计算方法这个难点时,精心设疑:圆柱的侧面是个曲面,怎样计算它的面积呢?让学生以小组为单位,用圆柱形纸筒进行实际操作,最后探究出侧面积的计算方法。在学生学会计算圆柱的底面积和侧面积以后,设疑:你会计算这圆柱的表面积吗?学生在充分练习铺垫的基础上,合理自然地就计算出了圆柱的表面积。在练习表面积的实际应用时又体现了数学与生活的联系。
四、教学方法:
直观演示和实践操作相结合,呈现梯度形态。 在侧面积和表面积的计算环节中,我首先让学生摸一摸,自己观察、发现,形成圆柱表面积的表象。认识到圆柱的表面积等于圆柱的侧面积和两个底面面积之和。教学侧面积的计算方法时,让学生以小组为单位,通过观察、操作推导出侧面积的计算方法。调集多种要素让学生亲身实践了,记忆一定就会更加深刻。这样充分利用了学生现有的学具和准备的圆柱体实物,让学生自己去动手、观察,推导出了圆柱的表面积和侧面积的计算公式,并运用幻灯片辅助教学,有利于学生对知识的理解及掌握。
当然,在这节课的教学中,还存在着一些不足:
首先,实践操作展示得不够。在动手探索圆柱侧面积的计算方法时,小部分同学的学具较小,展示时没有达到预期的效果。。
其次,学生的计算能力有待加强,在计算圆柱的侧面积和表面积时显得费时费力。
在以后的教学中,我还应该多吸取经验,弥补自己的不足,提升自己的教学能力。
篇二:《圆柱的表面积》教学反思
“圆柱的表面积”历来是学生学习的难点。观察发现,难点一:圆柱的侧面是一个曲面,探索侧面积的计算过程,有一个“化曲为直”的过程。这是理解的难点;难点二:在计算圆柱的表面积时涉及到圆柱的侧面积、底面积以及圆的周长与面积等概念,学生容易混淆;难点三:计算难度大,无论是圆的周长和面积计算中都涉及圆周率(∏);难点四:类似制作烟囱、水桶之类,很多学生由于缺少生活经验,不能灵活运用知识去解决问题。如何有效组织教学,谈谈自己的粗浅的看法。
一 抓住特征,建立表象。在六年级上学期,已经学习了长方体和正方体的表面积,学生对表面积的概念并不陌生。教学圆柱的.表面积时,重点是通过制作圆柱模型、观察圆柱展开图,让学生理解圆柱的表面积是由一个曲面和两个完全相同的圆围成的。通过操作,真正建立圆柱侧面的表象。
二 突破难点,紧抓联系。探索并理解侧面积的计算方法是这部分教学的难点。圆柱的侧面是一个曲面,例2结合具体情境,展示了圆柱的侧面展开图,沿着高将侧面展开后是一个长方形。“化曲为直”过程中,教学重点要抓二者之间的联系,即展开后长方形的长就是圆柱的底面周长,宽是圆柱的高。通过“展”、“围”的反复操作,让学生切实建立这两者之间的联系,有利于突破难点。
三 抓住本质,理清思路。圆柱的表面积包括一个侧面和两个底面。计算圆柱的侧面积时要用圆柱的底面周长乘高,而圆柱的底面积则需用到圆的面积公式。在同一题里,周长公式与面积公式混淆也是计算圆柱表面积出错的原因之一。怎样能更好的理清思路,灵活的进行计算呢?我认为,尽量将复杂的问题简单化,以不变应万变。即圆柱的侧面展开图是一个长方形,计算侧面积的直接条件是底面周长和高;圆柱的底面是圆形,计算圆的面积的直接条件是半径。当然,涉及到解决具体的问题,我们就要联系实际具体问题具体对待。
本单元的学习有利于发展学生的空间概念,有利于培养学生的思维的有序性,有利于培养学生认真审题的好习惯,提高学生灵活应用能力。
篇三:《圆柱的表面积》教学反思
我今天教学的内容是《圆柱的表面积》,圆柱的表面积教学,重点在于通过圆柱的侧面展开图推导出圆柱的侧面积计算公式,难点是灵活运用侧面积、表面积的有关知识解决实际问题。在本节课的教学中,我从始至终贯穿着“以学生为主体,教师为主导,训练思维为主线”的原则,让学生在玩中学,学中玩,以游戏闯关的形式愉悦地完成本课教学。课下,听取了老师们的评课,又联系课堂教学,我进行了深刻地反思。这节课的优点主要有以下几方面:
一、激情导课,激发学生的求知欲。
复习开始前,我问“同学们,老师今天把你们刚认识的新朋友带来了,你们猜,他是谁?”就在学生们的猜测下,我拿出了课前藏好的圆柱。我继续发问“你们认识它吗,是怎样认识的?你们还想知道它的什么?”由此展开圆柱的表面展开图。复习引入——提出长方体、正方体的表面积,导出圆柱的表面积的意义。
二、探究新知,闯关激发学习兴趣。
本课教学,以闯关的形式将课程分为三部分,以闯关成功奖励一节活动课为诱饵,激发学习兴趣。第一关是侧面积的计算,探究新知时,让学生通过讨论、交流,明确圆柱侧面沿高打开是长方形,长方形的长相当于圆柱的底面周长,宽相当于圆柱的高。由此导出圆柱的侧面积的计算方法。在学生学会计算圆柱的侧面积以后,设疑:你会计算这圆柱的表面积吗?(第二关开始)学生在充分练习铺垫的基础上,合理自然地就计算出了圆柱的表面积。在练习表面积的实际应用时,又很自然地进行了“进一法”的教学。第三关是练习阶段,以生活中的圆柱物体为例求出所需要的材料,要求学生说出要计算哪几个面,体现了数学来源于生活,数学应用于生活。
三、把握重、难点,合理利用教材。
“圆柱表面积”这节课教学内容主要包括:圆柱的侧面积、表面积的计算,以及用“进一法”取近似值。教材安排了三道例题,但在教学中,我将侧面积计算方法的推导作为教学难点来突破,将表面积的计算作为重点来教学,将用“进一法”取似值作为一个知识点。在突破侧面积的计算方法这个难点时,精心设疑:圆柱的侧面是个曲面,怎样计算它的面积呢?让学生以小组为单位,用圆柱形纸
筒进行实际操作,最后探究出侧面积的计算方法。在学生学会计算圆柱的底面积和侧面积以后,设疑:你会计算这圆柱的表面积吗?学生在充分练习铺垫的基础上,合理自然地就计算出了圆柱的表面积。在练习表面积的实际应用时又体现了数学与生活的联系。
四、教学方法,直观演示和实践操作相结合。
在侧面积和表面积的计算环节中,我首先让学生摸一摸,自己观察、发现,形成圆柱表面积的表象。认识到圆柱的表面积等于圆柱的侧面积和两个底面面积之和。教学侧面积的计算方法时,让学生以小组为单位,通过观察、操作推导出侧面积的计算方法。俗话说:听过了就忘记了,做过了就记住了。学生亲身实践了,一定记忆深刻。这样充分利用了学生现有的学具和准备的圆柱体实物,让学生自己去动手、观察,推导出了圆柱的表面积和侧面积的计算公式,并运用幻灯片辅助教学,有利于学生对知识的理解及掌握。
当然,在这节课的教学中,还存在着一些不足:
一、实践操作展示得不够。在动手探索圆柱侧面积的计算方法时,大部分学生联系上节课的经验说出看法,而没有实际操作,我也没有让他们展示推导的过程,加深印象,只是让他们说一说,导致一部分学困生只能听听而已。
二、学生对圆周长和面积的计算不够熟练,所以,在计算圆柱的侧面积和表面积时显得费时费力;小组合作的初衷也是好的,但在实际教学中却没有达到预期的要求。在以后的教学中,我还应该多吸取教训,弥补自己的不足,用更好的教学方法进行数学知识的教学。
篇四《圆柱的表面积》教学反思
“圆柱的表面积”一课,教材先提出“圆柱的表面积指的是什么”,让学生在交流中逐步理解圆柱表面积的含义。然后安排了让学生将圆柱模型展开,看一看展开的面是由哪几部分组成的,把它们标出来等探究活动,目的是让学生经历实验研究,建立数学模型的抽象思维过程,发现圆柱的表面积与已经学过的图形面积之间的联系,从而得到圆柱的表面积的计算方法。
对于圆柱表面积的知识,学生不是一张“白纸”。有的学生可能已经从数学课本上了解了一些,加之在“圆柱的认识”中也有了一些体验和感悟,个别学生在课外学习中已经知道一些圆柱表面积的计算方法。但是即使学生知道方法,却不一定真正理解。所以,教学中教师注重通过出示学习材料、提问、让学生操作和演示等活动,帮助学生获得圆柱的表面积与圆面积、长方形面积之间的联系。对于圆柱体侧面积计算公式的推导,要遵循主体性原则,让学生动手操作,在观察、推理中促进知识的迁移,使学生掌握圆柱体侧面积的计算原理和方法,即通过“等积变形”将圆柱的侧面转化为长方形。同时在教学过程中要尊重学生的知识基础和已有的生活经验,让学生亲身经历将实际问题抽象成数学模型进行解释与应用的过程,并根据课堂教学的实际调整教学思路。
我认为.数学建模活动要有利于学生的数学理解。数学教学活动要促使学生“真正理解和掌握基本的数学知识与技能,数学思想和方法,获得广泛的数学活动经验”。因此,数学教学活动的设计要有利于学生理解数学。本节课的教学,要让学生明确圆柱表面积的含义,知道表面积的计算方法,会用表面积的计算公式进行计算,更重要的是要引导学生经历探究圆柱表面积计算公式的过程,遵循由“观察物体——建立表象——抽象图形——建立模型(空间观念)”的认知规律,通过实践操作、讨论、交流等活动,促进学生对数学的理解。课开始,教师从数学知识的内在联系入手,提出两个综合性问题,唤醒学生对有关表面积计算的回忆,这是顺利开展数学活动、理解圆柱体表面积的重要基础。接着提出:“圆柱的表面积指的又是什么?”为后来的操作和丰富直观表象起到了导向作用,从而为学生经历建模过程,达成数学理解奠定了坚实的基础。
本节课我安排了自己制作、剪开、展开侧面、观察图形等活动。通过实践操作,使学生领悟长方形的长相当于圆柱底面的周长,长方形的宽相当于圆柱的高,从而逐步归纳出圆柱的表面积的计算公式。由此可见,借助实践操作活动建立丰富的直观表象,可以为学生的数学理解提供支撑,更重要的是在操作过程中学生积累了数学活动经验,奠定了良好的数学理解基础。
我给学生留出了较为充裕的思考与实践操作的时间,在得出结果后,教师尽可能全面把握学生的情况,及时捕捉课堂资源,提出:“说一说,在计算圆柱的表面积时,应注意些什么?”组织学生进行交流,在交流和讨论中,形成师生、生生之间的有效互动,促进学生将实际问题抽象成数学模型并进行解释与应用。
在练习中,我首先出示一组基本练习题,使学生熟练掌握求一般的圆柱体表面积的方法,加深对圆柱体表面积公式内涵的理解和把握。接着进一步联系生活实际提出问题让学生解决,体验运用知识成功解决问题的愉悦。最后,通过让学生再次回想计算圆柱体表面积的公式,进而加深对新知识的掌握。
圆柱体的表面积计算是一个难点。本堂课中学生虽然很明确的知道求圆柱体的表面积是求两个底面积和一个侧面积的面积和。但在实施过程中有一定的困难,有写同学是因为对其中的公式或意义没有真正理解。不知道要求侧面积先求什么,求了圆底面周长又和圆的面积混淆,列式计算时漏洞百出,甚至还有一部分同学因为计算又导致前功尽弃。
接触到一些实际问题的时候,由于学生的生活经验和社会经验都比较浅薄,从而对一物体的.认识不够,不能完全准确的来判断求的物体是几个面,分别是哪几个面,还有实际中求表面积时采用的近似法椰油一定的不理解,需要通过反复练习才能达到一定的程度。
圆柱的侧面积和表面积:
沿着圆柱的一条母线把圆柱剪开后展开,圆柱的侧面就由曲面转化为平面,展开图是一个矩形,矩形的长等于圆柱底面的周长c,矩形的宽等于圆柱的高h。这个矩形的面积就是圆柱的侧面积。由此可知,圆柱的侧面积等于底面的周长乘以高,即
S圆柱侧=ch=2πrh(r为圆柱底面的半径),圆柱的侧面积与两个底面圆面积的和,就是圆柱的表面积(也叫全面积)。即S圆柱表=S圆柱侧+2S底=2πrh+2πr2。
教学时,要把圆柱的侧面积和表面积区别开来。可用纸板做成圆柱模型,然后将侧面展开,导出计算圆柱侧面积和表面积的方法,并先概括成文字公式,再过渡到字母公式。
学生计算烟囱、水管、无盖桶、封闭桶罐等用料面积时,容易多算或少算底面积,灵活运用公式比较困难。可以多观察实物、模型,增加感性认识。也可以给出一些计算式子,要学生说明是求圆柱体的哪几个面的面积。例如:S=2πrh,是求( );S= 2πrh+πr2,是求( ); S=2πrh+2πr2,是求( )。
《圆柱的侧面积和表面积》教学片段:
在以往教学长方体、正方体的表面积时,常常为学生在学习表面积后的变式练习中,怎么都弄不清油桶、游泳池、粉刷教室到底缺哪个面而头疼。
我想,关于圆柱的表面积也会存在这样的问题吧。为了防患于未然,我想,是不是在新课的教学中就为这些情况作了一些铺垫呢?因此,在教学这一课时,我先引导学生复习了圆柱体的特征,然后设计了如下问题:
1、求铅笔涂漆部分的面积是求( )的面积。
2、压路机滚动一周压过多大路面是求( )的面积。
3、求一个水桶用多少材料是求( )的面积。
4、求汽油桶用多少铁皮是求( )的面积。
Copyright © 2009-2023 GDZZZ.Com. All Rights Reserved . ICP备案号:粤ICP备19010561号