八年级下学期期末教学反思
我要投稿投诉建议八年级下学期期末教学反思
课改的目的是为了发展学生,让学生表现欲望得到释放,从而获得成就感,并在情感能力上得到提升,从而提高自己的学习成绩。通过一学期的课改实践,已基本上实现期初制定的目标,也取得了一定的成绩:
一、认真学习,转变教学观念。
教育观念的转变是教育改革发展的先导;这一学期来,不断加强学习,在头脑中构筑先进的现代教育观念体系,努力转变教学观念,实现教师的教学角色转变。
二、抓好课堂教学改革这一重头戏,努力转变学生的学习方式。
课改的着重点是抓好转变教师观念,变革学习方式,努力创设自主合作,探究的课堂学习环境,着力于教师教学方式的转变。立足于学生的发展,积极推进学生学习方式的改进,其方法是:
1、自我探究式学习
学生的自我探究式学习表现在:教师只是给出要解决的问题,解决问题的思路方法、工具等都由学生自己来探究解决,这样提高了学生分析问题和解决问题的能力,磨练了意志,培养了创新能力,塑造了学生良好的个性品质。
2、合作交流式学习。
在学生学习过程中,积极提倡合作精神,充分提供合作条件。在学生对问题的研究和实践过程中,几乎人人都有表现的机会,虽然不是每个学生都是全面的和最优秀的,但是合作小组表现的结果都是最优秀的,这样不但化解了教师对每个学生进行个别辅导的难度,还提高了解决问题的效益。
教学引入
师:教材在《四边形》这一章《引言》里有这样一句话:把一个长方形折叠就可以得到一个正方形。现在请同学们拿出一个长方形纸条,按动画所示进行折叠处理。
动画演示:
场景一:正方形折叠演示
师:这就是我们得到的正方形。下面请同学们拿出三角板(刻度尺)和圆规,我们来研究正方形的几何性质—边、角以及对角线之间的关系。请大家测量各边的长度、各角的大小、对角线的长度以及对角线交点到各顶点的长度。
[学生活动:各自测量。]
鼓励学生将测量结果与邻近同学进行比较,找出共同点。
讲授新课
找一两个学生表述其结论,表述是要注意纠正其语言的规范性。
动画演示:
场景二:正方形的性质
师:这些性质里那些是矩形的性质?
[学生活动:寻找矩形性质。]
动画演示:
场景三:矩形的性质
师:同样在这些性质里寻找属于菱形的性质。
[学生活动;寻找菱形性质。]
动画演示:
场景四:菱形的性质
师:这说明正方形具有矩形和菱形的全部性质。
及时提出问题,引导学生进行思考。
师:根据这些性质,我们能不能给正方形下一个定义?怎么样给正方形下一个准确的定义?
[学生活动:积极思考,有同学做跃跃欲试状。]
师:请同学们回想矩形与菱形的定义,可以根据矩形与菱形的定义类似的给出正方形的定义。
学生应能够向出十种左右的定义方式,其余作相应鼓励,把以下三种板书:
“有一组邻边相等的矩形叫做正方形。”
“有一个角是直角的菱形叫做正方形。”
“有一个角是直角且有一组邻边相等的平行四边形叫做正方形。”
[学生活动:讨论这三个定义正确不正确?三个定义之间有什么共同和不同的地方?这出教材中采用的是第三种定义方式。]
师:根据定义,我们把平行四边形、矩形、菱形和正方形它们之间的关系梳理一下。
在实际的教学过程中,我总觉得缺少一种活跃性。出现此情况的原因主要有以下几种:
1、学生底子薄,而且学生搜集数学信息资料存在着局限性,导致着学生严重的动不起来。
2、课堂中的学生缺少质疑。少了质疑,也就少了对抗,少了对抗,也就少了知识的生成,少了生成,也就少了情感的愉悦。
2、评价的激励功能运用的不太好。
基于以上几种原因,在今后的教学中我将采取了以下几种措施:
1、更好的让学生挖掘教材,针对本班学生的实际情况,在每次预设导学案的时候,把学习任务设置的尽量少些,而且是由易到难,让每位学生能在课堂中打开思维,这样不仅能达成目标,更重要的是让学生能对目标进行深刻认同和理解。
2、关于质疑的问题。在班内设置了质疑小组,让他们对每节课的学习内容提出质疑,引起学生们的强烈的探究欲望,从而使学生获取更多的有关这节课的知识。
3、评价学生要适当。特别要对中差生多一些表扬,使他们建立学习的自信心,但也不能为了表扬而表扬,那样就会失去评价应有的.光环。评价学生要综合学生的各个方面,评价方式要多样化,一个会心的微笑、一个欣赏的手势……不管用哪种评价方式一定要发挥评价的激励功能。
虽然我的课堂在一些细节上还存在问题,有待我去提高。但我相信只要有探索和改变的勇气,我相信我的课堂会越来越精彩。
更多精彩内容请点击:初中>初二>数学>初二数学教案
我仅从四个方面,借助教学案例分析的形式,向老师们汇报一下我个人数学教学的体会,这四个方面是:
1.在多样化学习活动中实现三维目标的整合;2.课堂教学过程中的预设和生成的动态调整;3.对数学习题课的思考;4.对课堂提问的思考。
首先,结合《勾股定理》一课的教学为例,谈谈如何在多样化学习活动中实现三维目标的整合
案例1:《勾股定理》一课的课堂教学
第一个环节:探索勾股定理的教学
师(出示4幅图形和表格):观察、计算各图中正方形A、B、C的面积,完成表格,你有什么发现?
A的面积
B的面积
C的面积
生:从表中可以看出A、B两个正方形的面积之和等于正方形C的面积。并且,从图中可以看出正方形A、B的边就是直角三角形的两条直角边,正方形C的边就是直角三角形的斜边,根据上面的结果,可以得出结论:直角三角形的两条直角边的平方和等于斜边的平方。
这里,教师设计问题情境,让学生探索发现“数”与“形”的密切关联,形成猜想,主动探索结论,训练了学生的归纳推理的能力,数形结合的思想自然得到运用和渗透,“面积法”也为后面定理的证明做好了铺垫,双基教学寓于学习情境之中。
第二个环节:证明勾股定理的教学
教师给各小组奋发制作好的直角三角形和正方形纸片,先分组拼图探究,在交流、展示,让学生在实践探究活动中形成新的能力(试图发现拼图和证明的规律:同一个图形面积用不同的方法表示)。
学生展示略
通过小组探究、展示证明方法,让学生把已有的面积计算知识与要证明的代数式联系起来,并试图通过几何意义的理解构造图形,让学生在探求证明方法的过程中深刻理解数学思想方法,提升创新思维能力。
第三个环节:运用勾股定理的教学
师(出示右图):右图是由两个正方形
组成的图形,能否剪拼为一个面积不变的新
的正方形,若能,看谁剪的次数最少。
生(出示右图):可以剪拼成一个面积
不变的新的正方形,设原来的两个正方形的
边长分别是a、b,那么它们的面积和就是
a2+b2,由于面积不变,所以新正方形的面积
应该是a2+b2,所以只要是能剪出两个以a、b
为直角边的直角三角形,把它们重新拼成一个
边长为a2+b2的正方形就行了。
问题是数学的心脏,学习数学的核心就在于提高解决问题的能力。教师在此设置问题不仅是检验勾股定理的灵活运用,更是对勾股定理探究方法和证明思想(数形结合思想、面积割补的方法、转化和化归思想)的综合运用,从而让学生在解决问题中发展创新能力。
第四个环节:挖掘勾股定理文化价值
师:勾股定理揭示了直角三角形三边之间的数量关系,见数与形密切联系起来。它在培养学生数学计算、数学猜想、数学推断、数学论证和运用数学思想方法解决实际问题中都具有独特的作用。勾股定理最早记载于公元前十一世纪我国古代的《周髀算经》,在我国古籍《九章算术》中提出“出入相补”原理证明勾股定理。在西方勾股定理又被成为“毕达哥拉斯定理”,是欧式几何的核心定理之一,是平面几何的重要基础,关于勾股定理的证明,吸引了古今中外众多数学家、物理学家、艺术家,甚至美国总统也投入到勾股定理的证明中来。它的发现、证明和应用都蕴涵着丰富的数学人文内涵,希望同学们课后查阅相关资料,了解数学发展的历史和数学家的故事,感受数学的价值和数学精神,欣赏数学的美。
新课程三维目标(知识和技能、过程和方法、情感态度和价值观)从三个维度构建起具有丰富内涵的目标体系,课程运行中的每一个目标都可以与三个维度发生联系,都应该在这三个维度上获得教育价值。
2.课堂教学过程中的预设和生成的动态调整
案例2:年前,在鲁教版七年级数学上册《配套练习册》第70页,遇到一道填空题:
例:设a、b、c分别表示三种质量不同的物体,如图所示,图①、图②两架天平处于平衡状态。为了使第三架天平(图③)也处于平衡状态,则“?”处应放个物体b?
通过调查,这个问题只有极少数学生填上了答案,还不知道是不是真的会解,我需要讲解一下。
本周在学校的教学要求下,我重新调整了数学教学的课堂学习模式,学生从自己到小组,有一定的提高,特别是整体的班级合作学习的意识及状态。
另外,本周,在学校的组织下,我又听取郭永田老师的公开课。俗话说,当局者迷旁观者清,通过听课,我充分感受到,在平常的教学过程中,教师的课堂上的引导、组织,学生的整体学习状态,是一节课,能否成功的关键。一个班级的学习氛围也成为在这个班级能否上好公开课的关键。所以,下一步我的工作重心就是最大程度的调整班级工作策略,使学生形成比学赶帮超的氛围。,将数学教学的合作探究,共同进步应用到每节课堂里,让学生始终处在一个积极向上的学习环境中。相信这样一定能更好的达到学校教学的改革目标。
自我提问是指我们教师对自己的教学进行自我观察、自我监控、自我调节、自我评价后提出一系列的问题,以促进自身反思能力的提高。这种方法适用于教学的全过程。
如我们设计教学方案时,可自我提问:“学生已有哪些生活经验和知识储备”,“怎样依据有关理论和学生实际设计易于为学生理解的教学方案”,“学生在接受新知识时会出现哪些情况”,“出现这些情况后如何处理”等。
备课时,尽管我们教师会预备好各种不同的学习方案,但在实际教学中,还是会遇到一些意想不到的问题,如学生不能按计划时间回答问题,师生之间、同学之间出现争议等。这时,教师要根据学生的反馈信息,反思“为什么会出现这样的问题,我如何调整教学计划,采取怎样有效的策略与措施”,从而顺着学生的思路组织教学,确保教学过程沿着最佳的轨道运行。教学后,我们教师可以这样自我提问:“我的教学是有效的吗”,“教学中是否出现了令自己惊喜的亮点环节,这个亮点环节产生的原因是什么”,“哪些方面还可以进一步改进”,“我从中学会了什么”等。
教学从复习提问开始:平行四边形有哪些判定定理?请从边、角、对角线三方面来回顾。从边考虑:两组对边分别平行,两组对边分别相等;从角考虑:两组对角分别相等;从对角线考虑:两条对角线互相平分。得出结论:判定平行四边形的五种方法:平行四边形的定义、平行四边形的判定定理:
1、平行四边形的判定定理
2、平行四边形的判定定理
3、平行四边形的判定定理
4、通过对几种平行四边形的回顾与思考,使学生梳理所学的知识,系统地复习了平行四边形的基本性质和常见判别方法,在反思和交流过程中,逐渐建立知识体系。
首先,我给出了选择题:下列条件中,能判断一个四边形是平行时边形是平行四边形的条件有
(1)一组对边相等,一组对边平行;
(2)一组对角相等,一组邻边平行;
(3)一组对边相等,一组对角相等;
(4)一组对角相等,一组对边平行。
通过让学生根据题意动手画一画后得出结论,使学生能逐步掌握对平行四边形的判定定理的灵活运用,不但拓展了学生的`思维,而且也活跃了课堂气氛。特别是“一组对边相等,一组对角相等”同学们画出来是正确的,其实是错的。最后我用等腰三角形等边等角的特点进行操作,即过顶点和底边任意一点剪下,然后把两点交换重新拼成一个图形,即四边形,结果发现,这个四边形不是平行四边形。引导学生独立思考,通过归纳、概括、实践等一系统数学活动,感受获得成功的乐趣。
然后,出示几题证明题,从简单的,基本的入手,层层深化。要求学生选择最佳方法.教师强调:要在记住五个判定定理的基础上,根据已知条件的特点合理地选用判定定理。在证明题目时要看清题目的条件与结论,仔细分析,从而寻找一种较简单合理的证明方法。
不知不觉,一学年又要过去了,我对前阶段的教学进行了反思,用新课程的理念、教学模式,对曾经被视为经验的观点和做法进行了重新审视,现将在反思中得到的体会总结如下
一、教学中要转换角色,改变已有的教学行为
(1)新课程要求教师由传统的知识传授者转变为学生学习的组织者。
(2)教师应成为学生学习活动的引导者。
(3)教师应从师道尊严的架子中走出来,成为学生学习的参与者。
二、自我提问
在教学中,应经常进行自我提问,如设计教学方案时,可自我提问:学生已有哪些生活经验和知识储备,怎样依据有关理论和学生实际设计易于为学生理解的教学方案,学生在接受新知识时会出现哪些情况,出现这些情况后如何处理等。备课时,尽管我预备好各种不同的学习方案,但在实际教学中,还是会遇到一些意想不到的问题,如学生不能按计划时间回答问题,师生之间、同学之间出现争议等。这时,我要根据学生的反馈信息,反思为什么会出现这样的问题,我如何调整教学计划,采取怎样有效的策略与措施,从而顺着学生的思路组织教学,确保教学过程沿着最佳的轨道运行。教学后,教师可以这样自我提问:我的教学是有效的吗,教学中是否出现了令自己惊喜的亮点环节,这个亮点环节产生的原因是什么,哪些方面还可以进一步改进,我从中学会了什么等。
三、行动落实
如合作学习,小组讨论是新课程倡导的重要的学习理念,然而,在实际教学中,我们看到的往往是一种形式化的讨论。如何使讨论有序又有效地展开即是我们应该研究的问题。问题确定以后,我们就可以围绕这一问题广泛地收集有关的文献资料,在此基础上提出假设,制定出解决这一问题的行动方案,展开研究活动,并根据研究的实际需要对研究方案作出必要的调整,最后撰写出研究报告。这样,通过一系列的行动研究,不断反思,教师的教学能力和教学水平必将有很大的提高。
四、教师间需互相学习
山之石,可以攻玉。教师应多观摩其他教师的课,并与他们进行对话交流。在观摩中,教师应分析其他教师是怎样组织课堂教学的,他们为什么这样组织课堂教学;我上这一课时,是如何组织课堂教学的;我的课堂教学环节和教学效果与他们相比,有什么不同,有什么相同;从他们的教学中我受到了哪些启发;如果我遇到偶发事件,会如何处理通过这样的反思分析,从他人的教学中得到启发,得到教益。就象我校开展各科教师互相听课,人人参与,人人参评,这就给我们教师进步提供了一个很好的学习的平台。
五、总结记录
一节课结束或一天的教学任务完成后,我们应该静下心来细细想想:这节课总体设计是否恰当,教学环节是否合理,重点、难点是否突出;今天我有哪些行为是正确的,哪些做得还不够好,哪些地方需要调整、改进;学生的积极性是否调动起来了,学生学得是否愉快,我教得是否愉快,还有什么困惑等。把这些想清楚,作一总结,然后记录下来,这样就为今后的教学提供了可资借鉴的经验。经过长期积累,我们必将获得一笔宝贵的教学财富。
课改的目的是为了发展学生,让学生表现欲望得到释放,从而获得成就感,并在情感能力上得到提升,从而提高自己的学习成绩。通过一学期的课改实践,已基本上实现期初制定的目标,也取得了一定的成绩:
一、认真学习,转变教学观念。
教育观念的转变是教育改革发展的先导;这一学期来,不断加强学习,在头脑中构筑先进的现代教育观念体系,努力转变教学观念,实现教师的教学角色转变。
二、抓好课堂教学改革这一重头戏,努力转变学生的学习方式。
课改的着重点是抓好转变教师观念,变革学习方式,努力创设自主合作,探究的课堂学习环境,着力于教师教学方式的转变。立足于学生的发展,积极推进学生学习方式的改进,其方法是:
1、自我探究式学习
学生的自我探究式学习表现在:教师只是给出要解决的问题,解决问题的思路方法、工具等都由学生自己来探究解决,这样提高了学生分析问题和解决问题的能力,磨练了意志,培养了创新能力,塑造了学生良好的个性品质。
2、合作交流式学习。
在学生学习过程中,积极提倡合作精神,充分提供合作条件。在学生对问题的研究和实践过程中,几乎人人都有表现的机会,虽然不是每个学生都是全面的和最优秀的,但是合作小组表现的结果都是最优秀的,这样不但化解了教师对每个学生进行个别辅导的难度,还提高了解决问题的效益。
在实际的教学过程中,我总觉得缺少一种活跃性。出现此情况的原因主要有以下几种:
1、学生底子薄,而且学生搜集数学信息资料存在着局限性,导致着学生严重的动不起来。
2、课堂中的学生缺少质疑。少了质疑,也就少了对抗,少了对抗,也就少了知识的生成,少了生成,也就少了情感的愉悦。
2、评价的激励功能运用的不太好。
基于以上几种原因,在今后的`教学中我将采取了以下几种措施:
1、更好的让学生挖掘教材,针对本班学生的实际情况,在每次预设导学案的时候,把学习任务设置的尽量少些,而且是由易到难,让每位学生能在课堂中打开思维,这样不仅能达成目标,更重要的是让学生能对目标进行深刻认同和理解。
2、关于质疑的问题。在班内设置了质疑小组,让他们对每节课的学习内容提出质疑,引起学生们的强烈的探究欲望,从而使学生获取更多的有关这节课的知识。
3、评价学生要适当。特别要对中差生多一些表扬,使他们建立学习的自信心,但也不能为了表扬而表扬,那样就会失去评价应有的光环。评价学生要综合学生的各个方面,评价方式要多样化,一个会心的微笑、一个欣赏的手势不管用哪种评价方式一定要发挥评价的激励功能。
虽然我的课堂在一些细节上还存在问题,有待我去提高。但我相信只要有探索和改变的勇气,我相信我的课堂会越来越精彩。
课改的目的是为了发展学生,让学生表现欲望得到释放,从而获得成就感,并在情感能力上得到提升,从而提高自己的学习成绩。通过一学期的课改实践,已基本上实现期初制定的目标,也取得了一定的成绩:
一、认真学习,转变教学观念。
教育观念的转变是教育改革发展的先导;这一学期来,不断加强学习,在头脑中构筑先进的现代教育观念体系,努力转变教学观念,实现教师的教学角色转变。
二、抓好课堂教学改革这一重头戏,努力转变学生的学习方式。
课改的着重点是抓好转变教师观念,变革学习方式,努力创设自主合作,探究的课堂学习环境,着力于教师教学方式的转变。立足于学生的发展,积极推进学生学习方式的改进,其方法是:
1、自我探究式学习
学生的自我探究式学习表现在:教师只是给出要解决的问题,解决问题的思路方法、工具等都由学生自己来探究解决,这样提高了学生分析问题和解决问题的能力,磨练了意志,培养了创新能力,塑造了学生良好的个性品质。
2、合作交流式学习。
在学生学习过程中,积极提倡合作精神,充分提供合作条件。在学生对问题的研究和实践过程中,几乎人人都有表现的机会,虽然不是每个学生都是全面的和最优秀的,但是合作小组表现的结果都是最优秀的,这样不但化解了教师对每个学生进行个别辅导的难度,还提高了解决问题的效益。
教学引入
师:教材在《四边形》这一章《引言》里有这样一句话:把一个长方形折叠就可以得到一个正方形。现在请同学们拿出一个长方形纸条,按动画所示进行折叠处理。
动画演示:
场景一:正方形折叠演示
师:这就是我们得到的正方形。下面请同学们拿出三角板(刻度尺)和圆规,我们来研究正方形的几何性质—边、角以及对角线之间的关系。请大家测量各边的长度、各角的大小、对角线的长度以及对角线交点到各顶点的长度。
[学生活动:各自测量。]
鼓励学生将测量结果与邻近同学进行比较,找出共同点。
讲授新课
找一两个学生表述其结论,表述是要注意纠正其语言的规范性。
动画演示:
场景二:正方形的性质
师:这些性质里那些是矩形的性质?
[学生活动:寻找矩形性质。]
动画演示:
场景三:矩形的性质
师:同样在这些性质里寻找属于菱形的性质。
[学生活动;寻找菱形性质。]
动画演示:
场景四:菱形的性质
师:这说明正方形具有矩形和菱形的全部性质。
及时提出问题,引导学生进行思考。
师:根据这些性质,我们能不能给正方形下一个定义?怎么样给正方形下一个准确的定义?
[学生活动:积极思考,有同学做跃跃欲试状。]
师:请同学们回想矩形与菱形的定义,可以根据矩形与菱形的定义类似的给出正方形的定义。
学生应能够向出十种左右的定义方式,其余作相应鼓励,把以下三种板书:
“有一组邻边相等的矩形叫做正方形。”
“有一个角是直角的菱形叫做正方形。”
“有一个角是直角且有一组邻边相等的平行四边形叫做正方形。”
[学生活动:讨论这三个定义正确不正确?三个定义之间有什么共同和不同的地方?这出教材中采用的是第三种定义方式。]
师:根据定义,我们把平行四边形、矩形、菱形和正方形它们之间的关系梳理一下。
在实际的教学过程中,我总觉得缺少一种活跃性。出现此情况的原因主要有以下几种:
1、学生底子薄,而且学生搜集数学信息资料存在着局限性,导致着学生严重的动不起来。
2、课堂中的学生缺少质疑。少了质疑,也就少了对抗,少了对抗,也就少了知识的生成,少了生成,也就少了情感的愉悦。
2、评价的激励功能运用的不太好。
基于以上几种原因,在今后的教学中我将采取了以下几种措施:
1、更好的让学生挖掘教材,针对本班学生的实际情况,在每次预设导学案的时候,把学习任务设置的尽量少些,而且是由易到难,让每位学生能在课堂中打开思维,这样不仅能达成目标,更重要的是让学生能对目标进行深刻认同和理解。
2、关于质疑的问题。在班内设置了质疑小组,让他们对每节课的学习内容提出质疑,引起学生们的强烈的探究欲望,从而使学生获取更多的有关这节课的知识。
3、评价学生要适当。特别要对中差生多一些表扬,使他们建立学习的自信心,但也不能为了表扬而表扬,那样就会失去评价应有的.光环。评价学生要综合学生的各个方面,评价方式要多样化,一个会心的微笑、一个欣赏的手势……不管用哪种评价方式一定要发挥评价的激励功能。
虽然我的课堂在一些细节上还存在问题,有待我去提高。但我相信只要有探索和改变的勇气,我相信我的课堂会越来越精彩。
更多精彩内容请点击:初中>初二>数学>初二数学教案
我仅从四个方面,借助教学案例分析的形式,向老师们汇报一下我个人数学教学的体会,这四个方面是:
1.在多样化学习活动中实现三维目标的整合;2.课堂教学过程中的预设和生成的动态调整;3.对数学习题课的思考;4.对课堂提问的思考。
首先,结合《勾股定理》一课的教学为例,谈谈如何在多样化学习活动中实现三维目标的整合
案例1:《勾股定理》一课的课堂教学
第一个环节:探索勾股定理的教学
师(出示4幅图形和表格):观察、计算各图中正方形A、B、C的面积,完成表格,你有什么发现?
A的面积
B的面积
C的面积
生:从表中可以看出A、B两个正方形的面积之和等于正方形C的面积。并且,从图中可以看出正方形A、B的边就是直角三角形的两条直角边,正方形C的边就是直角三角形的斜边,根据上面的结果,可以得出结论:直角三角形的两条直角边的平方和等于斜边的平方。
这里,教师设计问题情境,让学生探索发现“数”与“形”的密切关联,形成猜想,主动探索结论,训练了学生的归纳推理的能力,数形结合的思想自然得到运用和渗透,“面积法”也为后面定理的证明做好了铺垫,双基教学寓于学习情境之中。
第二个环节:证明勾股定理的教学
教师给各小组奋发制作好的直角三角形和正方形纸片,先分组拼图探究,在交流、展示,让学生在实践探究活动中形成新的能力(试图发现拼图和证明的规律:同一个图形面积用不同的方法表示)。
学生展示略
通过小组探究、展示证明方法,让学生把已有的面积计算知识与要证明的代数式联系起来,并试图通过几何意义的理解构造图形,让学生在探求证明方法的过程中深刻理解数学思想方法,提升创新思维能力。
第三个环节:运用勾股定理的教学
师(出示右图):右图是由两个正方形
组成的图形,能否剪拼为一个面积不变的新
的正方形,若能,看谁剪的次数最少。
生(出示右图):可以剪拼成一个面积
不变的新的正方形,设原来的两个正方形的
边长分别是a、b,那么它们的面积和就是
a2+b2,由于面积不变,所以新正方形的面积
应该是a2+b2,所以只要是能剪出两个以a、b
为直角边的直角三角形,把它们重新拼成一个
边长为a2+b2的正方形就行了。
问题是数学的心脏,学习数学的核心就在于提高解决问题的能力。教师在此设置问题不仅是检验勾股定理的灵活运用,更是对勾股定理探究方法和证明思想(数形结合思想、面积割补的方法、转化和化归思想)的综合运用,从而让学生在解决问题中发展创新能力。
第四个环节:挖掘勾股定理文化价值
师:勾股定理揭示了直角三角形三边之间的数量关系,见数与形密切联系起来。它在培养学生数学计算、数学猜想、数学推断、数学论证和运用数学思想方法解决实际问题中都具有独特的作用。勾股定理最早记载于公元前十一世纪我国古代的《周髀算经》,在我国古籍《九章算术》中提出“出入相补”原理证明勾股定理。在西方勾股定理又被成为“毕达哥拉斯定理”,是欧式几何的核心定理之一,是平面几何的重要基础,关于勾股定理的证明,吸引了古今中外众多数学家、物理学家、艺术家,甚至美国总统也投入到勾股定理的证明中来。它的发现、证明和应用都蕴涵着丰富的数学人文内涵,希望同学们课后查阅相关资料,了解数学发展的历史和数学家的故事,感受数学的价值和数学精神,欣赏数学的美。
新课程三维目标(知识和技能、过程和方法、情感态度和价值观)从三个维度构建起具有丰富内涵的目标体系,课程运行中的每一个目标都可以与三个维度发生联系,都应该在这三个维度上获得教育价值。
2.课堂教学过程中的预设和生成的动态调整
案例2:年前,在鲁教版七年级数学上册《配套练习册》第70页,遇到一道填空题:
例:设a、b、c分别表示三种质量不同的物体,如图所示,图①、图②两架天平处于平衡状态。为了使第三架天平(图③)也处于平衡状态,则“?”处应放个物体b?
通过调查,这个问题只有极少数学生填上了答案,还不知道是不是真的会解,我需要讲解一下。
Copyright © 2009-2023 GDZZZ.Com. All Rights Reserved . ICP备案号:粤ICP备19010561号