《分数与除法的关系》教案一等奖

我要投稿投诉建议
您现在的位置:首页 > 范文 > 教师工作 > 教案

《分数与除法的关系》教案一等奖

2023-07-29 12:35:11

  《分数与除法的关系》教案一等奖

《分数与除法的关系》教案一等奖

1、《分数与除法的关系》教案一等奖

  篇一:2018新人教版分数与除法的关系教案

  教学内容:

  人教版五年级数学下册第四单元P49l。

  教学目标:

  1.使学生理解两个整数相除的商可以用分数来表示,会用分数表示两个数相除的商。

  2.使学生正确理解和掌握分数与除法的关系

  3.培养学生的应用意识,渗透辩证思想,激发学生学习兴趣。

  教学重难点:

  1.理解和掌握分数与除法的关系。

  2.用除法的`意义理解分数的意义。

  教学具准备:

  课本主题挂图,圆形纸片(4—5张)。

  教学过程:

  一、创设问题,复习导入

  1.填空。

  6表示( )。 

  7(2)的分数单位是( ),它有()个这样的分数单位。 10(1)

  2.问题引入

  师:5除以9,商是多少?(板书:5÷9 =)如果商不用小数表示,还有其他方法吗?有了分数,就可以解决这个问题。这节课我们就来学习怎样用分数表示除法的商,认识“分数与除法的关系”。 板书课题:分数与除法

  二、探索研究,学习新知

  (一)教学例1

  1.出示主题挂图,读题后,指导学生根据整数除法的意义列出算式。

  2.讨论:1 除以3结果是多少?你是怎样想的?

  3.汇报讨论结果:

  生:我解答这道题的列式是1÷3,可以把一个蛋糕看作单位“1”,把它平均分成3份,表示这样的一份的数,可以用分数1111来表示,1个蛋糕的就是个,所以,1÷3 =。 3333

  教师根据学生回答板书:

  1÷3 =

  (二)教学例3

  1.出示主题挂图,读题后,引导学生列出算式:3÷4。

  2.指导学生动手操作:拿出三张同样大小的圆形纸片,把它看作3块饼,用剪刀把它们分成同样大小的4份。

  引导学生边分边思考:我们把谁看作单位“1”?把它平均分成4份,每份是多少?你想怎样分? 教师巡视,参与指导。

  3.汇报演示分得的过程及结果,教师根据学生汇报总结不同的分法。

  方法一:可以一个一个地分,先把每块月饼平均分成4份,每块可分得4个

  个11(个)答:每人分得个。 331,3块月饼共分得124113,平均分给4个人,每人可分得3个,合在一起是块。

  3块月饼,4方法二:可以把3块月饼叠在一起,再平均分成4份,拿出其中的1份,拼在一起就得到

  所以每人分得3块。(如图)

  板书:3÷4 =

  4.理解。 师: 33(块)答:每人分得块。 443块月饼表示什么意思?

  指导学生说清理解:表示把3个月饼平均分成4份,表示这样1份的数;还可以表示把1个月饼平均分成4份,表示这样3份的数。 师:去掉单位名称,你能说一说3表示的意思吗?

  可以放手让学生说一说,归结明白:可以表示把单位“1”平均分成4份,表示这样3份的数;还可以表示把3平均分成4份,表示这样1份的数。

2、《分数与除法的关系》教案一等奖

  教学目标

  (1)使学生理解分数与除法的关系,掌握两个自然数相除,可用分数表示。

  (2)运用分数与除法的关系,学会把低级单位的名数聚成高级单位的名数。

  教学重点、难点

  重点、难点:理解分数与除法的关系。

  教学过程

  一、复习铺垫

  1、口述下列分数的意义:

  1/44/57/9

  2、口答列式计算。

  (1)植树节有120名少先队员栽树,平均分成12个小组。每个小组有多少名少先队员?

  120÷12=10(人)

  (2)把12米长的钢管平均截成6段,每段长多少米?

  12÷6=2(米)

  归纳:这两题都是将一个数平均分成若干份,求每一份是多少的应用题。用除法计算。

  如果把(2)题的12米改成1米,如何列式?

  1÷6

  它的商不能用整数表示,怎么办?这就是我们这节课要学习解决的问题。

  出示课题“分数与除法的关系”。

  二、教学新知

  1、教学例2。

  把1米长的钢管,平均截成6段,每段长多少米?

  (1)边作图边讲解。

  “1÷6”是把1平均分成6份,求其中1份是多少,根据题意也就是把1米长的钢管看作单位“1”,平均分成6份,表示这样1份的数是1/6,就是每段钢管的'长。所以

  1÷6=1/6(米)

  (2)如果把1米长的钢管平均分成4段、5段、7段,每段各是多少米?(口答)

  2、教学例3。

  把3只月饼平均分成4份,每份是多少?

  教学过程

  备 注

  (1)读题后指名学生列式:

  3÷4

  (2)边讲解边出示图式

  (3)引导学生说出第一种方法是把3只饼平均分成4份,先把每只饼都平均分成4份,取出其中的1份是1/4只,3块饼有3个1/4就是3/4只。

  第二种方法是把3只月饼看作单位“1”,把它平均分成4份,表示这样的1份就是3/4只。

  得出3÷4=3/4(只)

  小结:从上面两例说明,当两个自然数相除,它们的商可以用分数来表示。

  3、归纳分数与除法的关系。

  (1)观察例2、例3的算式。

  1÷6=1/6(米)

  3÷4=3/4(只)

  (2)思考分数与除法有什么关系?

  (3)结论:

  被除数÷除数=被除数/除数

  (4)练一练:

  课本P75第1题。

  把分数改写成除法算式。

  4/7=()÷()21/25=()÷()

  14/27=()÷()7÷()=7/()

  讨论7÷()=7/()在括号里能填什么数?能否填任何数?为什么?

  结论:在除法中,除数不能为零。

  在分数中,分母不能为零。

  三、练习反馈

  1、7分米是几分之几米?

  23分钟是几分之几小时?

  学生独立练习后集中反馈,说一说思考过程。

  小结:“7分米是几分之几米”实际上是求7分米是1米(即10分米)的几分之几?同理,23分钟是几分之几小时也就是求23分钟是1小时(即60分钟0的几分之几,用除法计算。

  把低级单位的名数聚成高级单位的名数,用进率去除低级单位名数的数值,结果可以用分数表示。

  2、练一练:

  课本P76第5题填在书上。

  四、课堂练习

  课本P76第2、3、4题。

  五、课后作业《作业本》

  学生能理解分数与除法的关系,掌握两个自然数相除,可用分数表示。大部分学生能运用分数与除法的关系,把低级单位的名数聚成高级单位的名数。

3、《分数与除法的关系》教案一等奖

  教学目标:

  1、使学生结合具体情境,探索并理解分数与除法的关系,会用分数表示两个整数相除的商,会用分数表示有关单位换算的结果;能列式解决求一个数式另一个数的几分之几。

  2、使学生在探索分数与除法关系的过程中,进一步发展数感,培养观察、比较、分析、推理等思维能力,体验数学学习的乐趣。

  教学重难点:

  理解分数与除法的关系,会用分数表示两个整数相除的商。

  教学过程:

  一、复习引入

  1、口算。

  (1)把8块饼干平均分给4个小朋友,每位小朋友分得几块?

  (2)把4块饼干平均分给4个小朋友,每位小朋友分得几块?

  口答列式及结果。

  2、说说把一个数平均分成4份,应该用什么方法列式?

  二、教学新课

  1、教学例6。

  (1)出示例6。

  (2)把3块饼干平均分成4份,每人分得几块?应该怎样列式?

  谈话:把3块月饼平均分给4个小朋友,每人能分得1块吗?

  指出:每人分得的不满1块,结果可以用分数表示。

  那么,可以用怎样的分数来表示3÷4的商呢?

  (3)动手操作,解决问题。

  谈话:请大家拿出准备好的3张同样大小的圆形纸片,把它们看作3块月饼,按题目要求来分一分,看结果是多少?

  学生操作。

  交流,并演示分法。

  ①一块一块地分,把每个圆片平均分成4份,每人每次分得1/4块,结果每人分得3个1/4块,也就是3/4块。

  ②一块一块地分之后,把12个1/4块合在一起平均分成4份,每份是3个1/4块,再把3个1/4块拼在一起,每人分得3/4块。

  ③把3个圆片叠在一起,平均分成4份,每份是3块的1/4,再把3个1/4块拼在一起,每人分得3/4块。

  (4)如果把3块饼平均分给5个小朋友,每人分得多少块?怎样列式?

  3÷5的`商是多少?怎样用分数表示?

  在小组中说说自己的想法。汇报各自想法。

  板书:3÷5=3/5(块)

  (5)归纳方法。

  <<<12>>>

  观察上面两个等式,你发现分数与除法有什么关系?

  在小组中说说。

  板书:被除数÷除数=被除数/除数

  如果用a表示被除数,用b表示除数,这个关系式可以怎样写?

  a÷b=a/b

  b可以是0吗?为什么?

  互相说说分数与除法的关系。

  板书课题:分数与除法的关系。

  2、试一试。

  (1)独立完成填空。

  (2)汇报结果,说说是怎样想的?根据什么得到的?

  指出:两个数相除,得不到整数商时,可以用分数表示。

  3、练一练。

  (1)完成第1题。

  独立填写,比较上下两行有什么不同?

  指出:用分数表示整数除法的商,要用除数作分母,被除数作分子。

  一个分数也可以看作两个数相除,分子相当于被除数,分母相当于分子。分数线相当于除号(2)完成第2题。

  独立完成填写,集体核对。

  说说是怎样想的?

  三、巩固练习

  1、完成练习八第1题。

  在小组中说说是怎样想的?集体核对。

  2、完成第2题。

  独立填写,集体核对。

  3、完成第3题。

  独立填写,说说是怎样想的?

  把1米长的彩带平均分成3份,求1份有多长,可以怎样列式?(1÷3)

  把2米长的彩带平均分成3份,求1份有多长,可以怎样列式?(2÷3)

  4、完成第4题。

  独立填写,集体核对。

  问:这两个问题有什么不同?

  指出:每人分得这袋糖的的几分之几,是把单位“1”平均分成5分;每人分得几分之几千克,是把2千克平均分成5份。

  5、完成第5题。

  独立完成填写。

  说说你是怎样想的?

  联系分数的意义填空,根据分数和除法的关系列式。

  四、课堂小结

  今天这节课,学习了什么内容?互相说说自己的收获。

4、《分数与除法的关系》教案一等奖

  教学目标

  1.使学生理解两个整数相除的商可以用分数来表示。

  2.明确分数与除法的关系,加深学生对分数意义的理解。

  教学重点

  理解、归纳分数与除法的关系。

  教学难点

  用除法的意义理解分数的意义。

  教学步骤

  一、铺垫孕伏。

  1.读题说得数。

  3.2+1.68 0.8×0.5 14-7.4 0.3÷1.5 4.8×0.02

  7.8+0.9 1.53-0.7 0.35÷15 0.4×0.8 0.8-0.37

  2.口述 表示的意义。

  3.列式计算。

  (1)把40棵树苗平均分给5个小组栽,每组栽多少棵?

  (2)把8米长的钢管平均分成2段,每段长多少米?

  二、探究新知。

  1.新课导入。

  出示例2:把1米长的钢管平均截成3段,每段长多少米?

  板书: 1÷3

  教师提问:1÷3的结果能用准确的数表示出来吗?怎么办?学习了分数与除法的关系就明白了.(板书、分数与除法)

  2.教学例2。

  (1)从分数的意义上理解1÷3,即把1米长的钢管着成单位“1”,把单位“1”平均分成3份,表示这样一份的数,可用分数 来表示,1米的 就是 米.(板书 米)

  (2)学生完整叙述自己想的过程。

  (3)反馈练习。

  ①把1米长的钢管,平均分成8段,每段长多少?

  ②把1块饼平均分给5个同学,每个同学得到多少块?

  3.教学例3.

  出示例3:把3块饼平均分给4个孩子,每个孩子分得多少块?

  (1)读题列式: 3÷4

  (2)动手操作:怎样把3块饼平均分给4个同学呢?

  (3)学生交流.

  甲生:先把每个圆剪成4个 块,然后把12个 平均分成4份,再把3个 拼在一起,每份是 块.

  乙生:把3个圆放在一起,平均分成4份后,剪下其中的一份,再把1份中的3个 拼在一起,得到每个分 块、(在3÷4后板书 块)

  (4)看图根据乙生分饼的过程说出 表示的.意义。

  ①乙生把3块饼平均分成了4份,这样的一份是3块饼的 ,即

  ②甲生把1块饼平均分成了4份,表示这样的3份的数是 。

  (5)都是 ,意义有何不同?(结合算式说出 的两种意义)

  明确: 表示把3平均分成4份,取其中的1份;

  还表示把单位“1”平均分成4份,取这样的3份.

  (6)反馈练习:说说下面分数的两种意义

  4.归纳分数与除法的关系。

  (1)教师提问:怎样用分数来表示整数除法的商呢?

  学生归纳:可以用分数表示整数除法的商,用除数做分母,用被除数作分子、也就是说分数既表示分数的意义,又表示整数除法的商、

  (板书: )

  教师明确:分数是一种数,除法是一种运算,所以确切地说,分数的分子相当于除法的被除数,分数的分母相当于除法的除数、

  (2)讨论:用字母表示分数与除法的关系有什么要求?

  (3)反馈练习。

  三、全课小结、

  通过今天的学习,你明白了什么?

  四、随堂练习。

  1.填空、

  分数可以用来表示除法算式的( ).其中分数的分子相当于( ),分母相当于( ).

  2.用分数表示下列各式的商。

  4÷5 11÷13 27÷35

  9÷9 13÷16 33÷29

  3.列式计算。

  (1)把5米长的绳子,平均分成12段,每段长多少米?

  (2)把一个4平方米的圆形花坛分成大小相同的5块,每一块是多少平方米?

  (用分数表示)

  (3)小明用15分钟走了1千米路,平均每分走几分之几千米?

  五、布置作业。

  用分数表示下面各式的商。

  3÷4 7÷12 16÷49 25÷24 9÷9

5、《分数与除法的关系》教案一等奖

  教学目标

  1、使学生结合具体情境,探索并理解分数与除法的关系,会用分数表示两个整数相除的商,会用分数表示有关单位换算的结果;能列式解决求一个数是另一个数的几分之几的简单实际问题。

  2、使学生在探索分数与除法关系的过程中,进一步发展数感,培养观察、比较、分析、推理等思维能力。

  3、构筑探索交流的平台,体验数学学习的乐趣,增强学生学习数学的信心。

  教学重难点

  理解分数与除法的关系

  教学准备

  每人准备4张同样大小的圆片

  教学过程

  一、引入情境,揭示例题

  口答题

  1、把8块饼干平均分给4个小朋友,每人分得几块?

  2、把4块饼干平均分给4个小朋友,每人分得几块?

  3、把3块饼干平均分给4个小朋友,每人分得几块?

  怎样列式?板书3÷4

  引导:把3块饼干平均分给4个小朋友,平均每人能分到1块吗?

  不满1块那该怎么表示呢?

  生:小数或分数

  二、实践操作探索研究

  师:那怎样用分数表示3÷4的商呢?请大家拿出3张同样的圆片,把它看作3块饼,按题目的要求把它分一分,看结果是多少?

  学生动手操作

  教师巡视,了解学生是怎样的想的,当学生表述比较好时,教师有选择的把圆片贴在黑板上,等集体交流时让学生说说这样分的理由。

  师:接下来我们请同学汇报一下他们研究所得结果。

  (生讲述这样分的理由)

  教师总结:(1)把一块饼干平均分给4个小朋友,所以就平均分成4份,每人就可分得1/4块,现在一共有3块饼干,每人就可得到3个1/4块,就是3/4块。

  (2)如果把三块饼干放在一起分,每人就可以分得3块的1/4,就是3/4块。

  总结:把3块饼干平均分给4个小朋友,每人分得3/4块

  板书:3÷4=3/4(块)

  师:如果我想把3块饼干分给5个小朋友呢?,每人分得多少块?

  学生口述理由。板书:3÷5

  师:想想该怎么去分?把你的想法和同桌交流下。

  指名让学生说说思考过程。

  板书:3÷5=3/5(块)

  师:如果分给7个小朋友呢?

  学生口述3÷7=3/7(块)

  三、归纳总结,围绕主题

  师:请同学们仔细观察上面的两个等式,你发现分数和除法算式之间有和联系?这也正是本节课我们所要学习的内容。

  板书课题:分数与除法的关系

  生相互交流。教师板书:被除数÷除数=

  师:除法算式又可以写成什么形式?

  生补充:被除数÷除数=被除数/除数

  师:如果用a表示被除数,b表示除数,那么a÷b又可怎么写?

  生:a÷b=a/b

  师:这里的a和b可以取任何数吗?为什么?

  生:除数不能为0。

  师:分数和除法之间的关系,你有什么好的方法记住它们吗?

  生交流讨论并回答

  师总结,被除数相当于分子,除数相当于分母,除号相当于分数线。

  四、巩固练习,拓展延伸

  师:请大家把书本打开到第45页,马上完成“练一练”的第一小题。

  集体校对。

  师引导:比较上下两行有什么不同?

  在学生回答的基础上,引导:用分数可以表示整数除法的商,反过来,一个分数也可以看成两个数相除。

  师:接下来请大家独立完成“试一试”两小题。

  然后小组交流你是怎么想的?

  师:把7分米改写成用米作单位,可以列怎样的除法算式?

  生:7÷10=7/10(米)

  师:第二个呢?

  生:23÷60=23/60(时)

  师:独立完成“练一练”的第二题

  集体讲评校对。

  师:完成“练习八”的第一题口答

  师:完成“练习八”的第三题

  学生在书本上完成,

  教师追问:把1米长的彩带平均分成3份,求1份有多长,可以列怎样的除法算式?把2米长的彩带平均分成3份,求1份有多长,可以列怎样的除法算式?

  五、课堂作业

  完成“练习八”的第二题

  教后反思:

  本节课重在学生通过自己探索实践,来观察和理解分数和除法之间的关系。在教学时,要求学生把3块饼干平均分给4个小朋友,当有学生展示了自己的研究成果,即把一块饼干平均分给4个小朋友,就该把这块饼干平均分成4份,这样每人就可以得到1块饼干中的1/4,也就是1/4块,现在有三个同样的饼干,按照同样的方法去分,每人就可以得到3个1/4块,就是3/4块。在边展示边讲解后,我继续提问,除了这样的思考方式,你还可以怎么分?有一个成绩较好,思维较敏锐的学生说,我们还可以把这块饼干平均分成8份,每人取其中的2份,就是2/8块,共有3个2/8块,就是6/8块也就是3/4块。我注意到了,我只是点了一下,这样也是可以的,6/8就是3/4,这是我们以后所要学习的内容。课后,在其余老师的点拨下,我也认真思考了这个问题。其实,我觉得,这个学生出现了这样的思维方式也未尝不可,的确也是合情合理的。但是实际上,我还是觉得该生对于分数的意义掌握的不够牢固,对于题目中已经很明显地给出了。要平均分给4个小朋友,那应该平均分成4份,而他却想到了平均分成了8份,这是思维跳跃的一种形式,但也是基本知识掌握不牢固的一种体现,所以在今后的教学中,我应加强学生认真读题的习惯,将基础知识扎扎实实地运用到解决实际问题中去。<

6、《分数与除法的关系》教学案例与反思

  教学目标

  1、使学生结合具体情境,探索并理解分数与除法的关系,会用分数表示两个整数相除的商,会用分数表示有关单位换算的结果;能列式解决求一个数是另一个数的几分之几的简单实际问题。

  2、使学生在探索分数与除法关系的过程中,进一步发展数感,培养观察、比较、分析、推理等思维能力。

  3、构筑探索交流的平台,体验数学学习的乐趣,增强学生学习数学的信心。

  教学重难点

  理解分数与除法的关系

  教学准备

  每人准备4张同样大小的圆片

  教学过程

  一、引入情境,揭示例题

  口答题

  1、把8块饼干平均分给4个小朋友,每人分得几块?

  2、把4块饼干平均分给4个小朋友,每人分得几块?

  3、把3块饼干平均分给4个小朋友,每人分得几块?

  怎样列式?板书3÷4

  引导:把3块饼干平均分给4个小朋友,平均每人能分到1块吗?

  不满1块那该怎么表示呢?

  生:小数或分数

  二、实践操作探索研究

  师:那怎样用分数表示3÷4的商呢?请大家拿出3张同样的圆片,把它看作3块饼,按题目的要求把它分一分,看结果是多少?

  学生动手操作

  教师巡视,了解学生是怎样的想的,当学生表述比较好时,教师有选择的把圆片贴在黑板上,等集体交流时让学生说说这样分的理由。

  师:接下来我们请同学汇报一下他们研究所得结果。

  (生讲述这样分的理由)

  教师总结:(1)把一块饼干平均分给4个小朋友,所以就平均分成4份,每人就可分得1/4块,现在一共有3块饼干,每人就可得到3个1/4块,就是3/4块。

  (2)如果把三块饼干放在一起分,每人就可以分得3块的1/4,就是3/4块。

  总结:把3块饼干平均分给4个小朋友,每人分得3/4块

  板书:3÷4=3/4(块)

  师:如果我想把3块饼干分给5个小朋友呢?,每人分得多少块?

  学生口述理由。板书:3÷5

  师:想想该怎么去分?把你的想法和同桌交流下。

  指名让学生说说思考过程。

  板书:3÷5=3/5(块)

  师:如果分给7个小朋友呢?

  学生口述3÷7=3/7(块)

  三、归纳总结,围绕主题

  师:请同学们仔细观察上面的两个等式,你发现分数和除法算式之间有和联系?这也正是本节课我们所要学习的内容。

  板书课题:分数与除法的关系

  生相互交流。教师板书:被除数÷除数=

  师:除法算式又可以写成什么形式?

  生补充:被除数÷除数=被除数/除数

  师:如果用a表示被除数,b表示除数,那么a÷b又可怎么写?

  生:a÷b=a/b

  师:这里的a和b可以取任何数吗?为什么?

  生:除数不能为0。

  师:分数和除法之间的关系,你有什么好的方法记住它们吗?

  生交流讨论并回答

  师总结,被除数相当于分子,除数相当于分母,除号相当于分数线。

  四、巩固练习,拓展延伸

  师:请大家把书本打开到第45页,马上完成“练一练”的第一小题。

  集体校对。

  师引导:比较上下两行有什么不同?

  在学生回答的基础上,引导:用分数可以表示整数除法的商,反过来,一个分数也可以看成两个数相除。

  师:接下来请大家独立完成“试一试”两小题。

  然后小组交流你是怎么想的?

  师:把7分米改写成用米作单位,可以列怎样的除法算式?

  生:7÷10=7/10(米)

  师:第二个呢?

  生:23÷60=23/60(时)

  师:独立完成“练一练”的第二题

  集体讲评校对。

  师:完成“练习八”的`第一题口答

  师:完成“练习八”的第三题

  学生在书本上完成,

  教师追问:把1米长的彩带平均分成3份,求1份有多长,可以列怎样的除法算式?把2米长的彩带平均分成3份,求1份有多长,可以列怎样的除法算式?

  五、课堂作业

  完成“练习八”的第二题

  教后反思:

  本节课重在学生通过自己探索实践,来观察和理解分数和除法之间的关系。在教学时,要求学生把3块饼干平均分给4个小朋友,当有学生展示了自己的研究成果,即把一块饼干平均分给4个小朋友,就该把这块饼干平均分成4份,这样每人就可以得到1块饼干中的1/4,也就是1/4块,现在有三个同样的饼干,按照同样的方法去分,每人就可以得到3个1/4块,就是3/4块。在边展示边讲解后,我继续提问,除了这样的思考方式,你还可以怎么分?有一个成绩较好,思维较敏锐的学生说,我们还可以把这块饼干平均分成8份,每人取其中的2份,就是2/8块,共有3个2/8块,就是6/8块也就是3/4块。我注意到了,我只是点了一下,这样也是可以的,6/8就是3/4,这是我们以后所要学习的内容。课后,在其余老师的点拨下,我也认真思考了这个问题。其实,我觉得,这个学生出现了这样的思维方式也未尝不可,的确也是合情合理的。但是实际上,我还是觉得该生对于分数的意义掌握的不够牢固,对于题目中已经很明显地给出了。要平均分给4个小朋友,那应该平均分成4份,而他却想到了平均分成了8份,这是思维跳跃的一种形式,但也是基本知识掌握不牢固的一种体现,所以在今后的教学中,我应加强学生认真读题的习惯,将基础知识扎扎实实地运用到解决实际问题中去。

7、《分数与除法的关系》的教学反思

  教学分数与除法的关系时学生很是配合,仿佛早已掌握了所有知识点,对于我的提问对答如流,甚至当我给出例题÷4时,全班不假思索不屑一顾的脱口而出四分之三,而当我问出为什么时,他们甚至不愿意去思考,仿佛我问的这个"为什么"简直就是废话中的废话。整个班级躁动不安,是清明假期临的缘故吧。看着即将发怒的老师,孩子们安静下一张张稚气的脸望着我,眼神中带有一丝丝惊恐。我突然想笑,这不就是儿时的自己吗?我沉住气笑着说:明天放假了,看大家很是兴奋吧!孩子们长舒一口气掩面而笑。我接着说:站好最后一班岗的战士才是真正的好战士。同学们心领会神的坐得端端正正。"授人以鱼,不如授人以渔。"我接着说,"大家都知道除以4得四分之三,那除以4为什么等于四分之三呢?四分之三就相当于鱼。而老师想让你得到的是渔,你觉得呢?"果然还是聪明的孩子,轻轻一拨,大部分开始思考了,我和孩子们开始了我铺好的探究之旅。

  一、通过操作,感悟算理。

  我叫学生拿出前准备好的三个圆,让学生在小组内用自己喜欢的方式验证对除以4这一结果的猜想。孩子们或静下心仔细思考;或把自己手里的圆形折一折、剪一剪;或在本子上画一画、写一写;或同桌小声交流自己的想法。我把想法不同的孩子叫上讲台,在黑板上画出自己的思考过程。并让他们一一介绍。通过学生的操作,得出两种分法,方法(一):把三个圆一个一个分,每次得四分之一,分次,就得个四分之一,就是四分之三张饼。方法(二):把三个圆叠起,平均分成4份,得到张饼的四分之一,也是个四分之一,相当于一张饼的四分之三。不管怎样分,都可以验证÷4用分数四分之三表示结果。还有学生想出了方法(三):除以4得07,07化成分数也是四分之三。通过学生自主操作让其充分理解其中的算理。

  二、再次说理,悟出关系。

  在学生初步感知分数与除法的关系时,我有意识地把例题改了一下,把块饼平均分给个人,把4块饼平均分给7个人,让学生通过画图或说理,快速的算出它们的商。让学生亲身体会到计算两个整数相除,除不尽或商里面有小数时就用分数表示他们的商,这样既简便又快捷,而且不容易出错。

  通过学生自主生成的三道算式,让学生去发现除法与分数之间到底有怎样的关系?并把自己的想法和同桌互相交流。最终学生小结出:除法中的被除数相当于分数的分子,除数相当于分数的分母,除号相当于分数线。并明确:除法是一种运算,而分数是一种数。

  三、对比练习,深化知识。

  出示:

  把三块饼平均分给7个小朋友,每人分得这些饼的.几分之几。

  把三块饼平均分给7个小朋友,每人分得几分之几块。

  让学生观察这两道题目的区别,一道带单位,一道不带单位。第一道是根据分数的意义把单位"1"平均分成几份,每份就是单位"1"的几分之一,是份数与单位"1"的关系,在数学中我们称为分率,分率不带单位。第二题带单位则表示的是一个具体的数量,则用总数量除以平均分的份数得到每份的具体数量,得数的单位跟被除数的单位一致。明确:分数有两种含义,一种表示与单位1的关系即分率(不带单位),一种则表示具体的数量(要带单位),为以后学习分数和百分数应用题做好铺垫。

  在教学过程中,让学生在自主参与,动手操作、观察比较、交流汇报的基础上去推理和概括,能达到事半功倍的效果。我一直崇尚让学生自己去发现,自己去总结,让学生能学习探究问题的方法,而不是单纯的教授一些解题技巧,因为我知道授生以"渔"永远比授生以"鱼"的重要的多!

8、《分数与除法的关系》教学反思

  教学片段:

  师:把1米长的铁丝平均分成3段。每段长多少米?(你是怎样想的的?结果是多少?为什么?)

  生1:把1米平均分成3份,每份就是1/3米。

  生2:1÷3=1/3(米)

  生3:总量÷份数=每份数

  生4:可用线段来表示

  师:把2米长的铁丝平均分成3段。每段长多少米?

  生1:2÷3=2/3(米)

  生2:不,应该是1/3米

  师:你们能分别解释一下原因吗?

  当这里学生似乎有些糊涂的时候,不知1/3米和2/3米有何区别时?老师及时的`出示两段线段,让学生直观的看到了第一题和第二题的区别,问题也随着解决了,数学课中抽象的东西很多时候就需要像线段图这种直观的图形来解决。

  教学片段:

  师:把3块圆饼平均分给4个小朋友,每个小朋友分得多少块?(你是怎样列式的?结果是多少?)

  生:3÷4=3/4(块)

  师:你能解释一下为什么是3/4块吗?

  验证3÷4为什么等于3/4这一过程,这里教师并没有直接告诉学生答案,而是要学生自己来说一说为什么?学生利用手中现有的材料自己动手画一画、剪一剪、拼一拼,自主探索、交流合作,发现问题,解决问题。探索是学生亲自经历和体验的学习过程,也就是让学生用自己理解的方式实现数学的“再创造”。在整个教学的过程,教师为学生创设各种不平衡的问题情境,让学生在自己的尝试、探究、猜想、思考中,不断产生问题、解决问题、再生成新的问题。上面的教学片段中,教师给学生留与了操作的空间,为学生在操作的过程中自己生发问题,并在充分的讨论和思考中使学生相互解决问题,奠定了学习的基础。同时,在教学的过程,教师挑起“矛盾”,引发疑问,引起争论,促使学生进行深入思考,促使学生对自己所从事的活动产生兴趣,形成主动学习的心态。因此,一个富有生命力的课堂,必是注重学生学习过程的课堂,一个促使学生的问题不断解决与生成的课堂。

9、《分数与除法的关系》教学反思

  这节课的重点是理解分数与除法的关系,难点是用除法意义理解分数意义。让学生通过本节课的学习,初步知道两个整数相除,不论是被除数小于、等于、或大于除数,都可以用分数来表示商。能运用分数与除法的关系,解决一些简单的问题。

  这节课的内容还是比较简单的。如果单纯的教学它们的关系:一个分数的分子相当于除法中的`被除数,分母相当于除数。学生一定学得很扎实,但是这样一来3÷4=的算理往往被忽视。因此我把重点放在例题2,3÷4=()(块)的探究上。

  在教学中我引导学生用3张圆形纸片动手分一分,并让学生思考把3块饼平均分给4个小朋友可以有几种分法。

  生1: 我们先把1块饼看作单位“1”,平均分成4份,每人先拿其中的一份,有3个圆,那就是每人有3个1/4块是3/4块。

  生2: 把3块饼重叠的放在一起,然后再平均分成4份,每人拿其中的一份,里面也有3个1/4是3/4块。

  让学生通过动手操作,得出两种不同的分法,引申出两种含义,即1块饼的3/4,3块饼的1/4,通过这一过程,学生充分理解了3÷4=的算理。

  在整节课中我注重让学生主动参与学习过程,学生的主体地位得到了充分体现,在学习活动中,发展了个性,培养了能力。